1. Comparing functions (13 points)
 (a) (8 points) Order the following functions according to their order of growth from the lowest to the highest. If you think that two functions are of the same order (i.e \(f(n) \in \Theta(g(n)) \)), put them in the same group.
 \[5n + \log n, \ n^2, \ n + n^2 \log n, \ 2^n, \ n^2 \log n, \ (n + 1)!, \ 2^{2n}, \ n^3 + 2n + 5. \]

 (b) (5 points) For each pair of functions in the table below, determine whether \(f(n) \in O(g(n)) \), \(f(n) \in \Omega(g(n)) \), \(f(n) \in \Theta(g(n)) \), or all of them. It is NOT necessary to justify your answer.

<table>
<thead>
<tr>
<th></th>
<th>(f(n))</th>
<th>(O)</th>
<th>(\Omega)</th>
<th>(\Theta)</th>
<th>(g(n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1)</td>
<td>((n + 5) \log n)</td>
<td></td>
<td></td>
<td></td>
<td>(n^2 + \log n)</td>
</tr>
<tr>
<td>2)</td>
<td>(n^2 \log n)</td>
<td></td>
<td></td>
<td></td>
<td>(5n^2 + n \log n)</td>
</tr>
<tr>
<td>3)</td>
<td>(n \log n)</td>
<td></td>
<td></td>
<td></td>
<td>(n \sqrt{n})</td>
</tr>
<tr>
<td>4)</td>
<td>(n^2 + 10 \log n)</td>
<td></td>
<td></td>
<td></td>
<td>(n^2 - \sqrt{n})</td>
</tr>
<tr>
<td>5)</td>
<td>(\log_3(n^3))</td>
<td></td>
<td></td>
<td></td>
<td>(2 \log_2 n)</td>
</tr>
</tbody>
</table>

2. (12 points) Proof of asymptotic notations
 (a) (7 points) Use the basic definition of \(\Omega \), prove that \(2n^2 - n + 1 \in \Omega(n^2) \)

 (b) (5 points) Given two asymptotically positive functions \(f(n) \) and \(g(n) \), prove that the following statement is correct: \(f(n) \in O(g(n)) \) implies that \(f(n) + g(n) \in \Theta(g(n)) \).
3. (12 points) Analysis of iterative algorithm. You are given the following sorting algorithm:

```java
//Input: An array A of n real numbers
1 ExchangeSort(A[1..n]) {
2     for (i = 1; i <= n - 1; i++) {
3         for (j = i+1; j <= n; j++) {
4             if (A[i] > A[j])
5                 exchange(A[i], A[j]);
6         }
7     }
8 }
```

a. In order to argue for the correctness of the algorithm, what can be claimed at the end of i-th iteration of the outer for loop? (Hint: what properties are satisfied by the first i numbers in the array?)

b. How many times will line 4 be executed, as a function of n, in the best case and worst case, respectively?

c. How many times will line 5 be executed, as a function of n, in the best case and worst case, respectively?

d. What is the asymptotic running time of this algorithm?
4. (35 points) Assume that $T(1) \in \Theta(1)$. Solve the following recurrence functions using the **master method**. Mark the correct answer.

a. $T(n) = 2T(n/2) + n^2$;
 (a) $\Theta(n)$
 (b) $\Theta(n \log n)$
 (c) $\Theta(n^2)$
 (d) Master Method cannot be applied.
 (e) None of the above.

b. $T(n) = 2T(n/3) + n^{3/2}$;
 (a) $\Theta(n^{\log_3 2})$
 (b) $\Theta(n^{3/2})$
 (c) $\Theta(n^{\log_2 3})$
 (d) Master Method cannot be applied.
 (e) None of the above.

c. $T(n) = 8T(n/2) + n^3$;
 (a) $\Theta(n^3 \log n)$
 (b) $\Theta(n^4)$
 (c) $\Theta(n^3)$
 (d) Master Method cannot be applied.
 (e) None of the above.

d. $T(n) = T(n/3) + \frac{n}{\log n}$;
 (a) $\Theta\left(\frac{n}{\log n}\right)$
 (b) $\Theta(n)$
 (c) $\Theta(n \log n)$
 (d) Master Method cannot be applied.
 (e) None of the above.

e. $T(n) = 2T(n/4) + \sqrt{n \log n}$;
 (a) $\Theta(\sqrt{n})$
 (b) $\Theta(\sqrt{n \log n})$
 (c) $\Theta(\sqrt{n \log^2 n})$
 (d) Master Method cannot be applied.
 (e) None of the above.
f. $T(n) = \frac{n}{2}T(n/2) + n \log n$;

 (a) $\Theta(n)$

 (b) $\Theta(n \log n)$

 (c) $\Theta(n \log^2 n)$

 (d) Master Method cannot be applied.

 (e) None of the above.

5. (13 points) Analysis of recursive algorithm. Consider the pseudocode of the following two algorithms for computing the n-th power of three, where n is a non-negative integer.

```plaintext
Alg1 (n)
   if (n == 0) return 1;
   return 3 * Alg1(n - 1);
end

Alg2 (n)
   if (n == 0) return 1;
   m = floor (n / 2);
   p = Alg2(m);
   p = p * p;
   if (n % 2 == 1) // n is an odd number
      return 3 * p;
   else // n is an even number;
      return p;
   end
end
```

a. (3 points) Using induction, prove that alg1 will correctly compute 3^n.

b. (4 points) Let $A(n)$ and $B(n)$ be the running time of Alg1 and Alg2, respectively, as a function of n. Write down the recurrence for $A(n)$ and $B(n)$.
c. (6 points) Solve $A(n)$ and $B(n)$ to obtain the asymptotic running time of Alg1 and Alg2, using any method you learned in class, and determine which algorithm is more efficient.

6. (10 points) Assume that $T(1) \in \Theta(1)$. Solve the following recurrence function using the recursion tree method to get an asymptotically tight bound.

$$T(n) = 3T(n/2) + n$$
7. (10 points) Assume that $T(1) \in \Theta(1)$ and $T(n) = 2T(n/3) + T(n/4) + n$. Prove that $T(n) \in O(n)$ using the substitution method.