1. Stable sorting and in-place sorting.

<table>
<thead>
<tr>
<th></th>
<th>Stable?</th>
<th>In-place?</th>
<th>Time complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Merge sort</td>
<td>Yes</td>
<td>No</td>
<td>Θ(n \log n)</td>
</tr>
<tr>
<td>Quick sort</td>
<td>No</td>
<td>Yes</td>
<td>Θ(n \log n) on average (or expected for randomized alg) but Θ(n^2) worst case.</td>
</tr>
<tr>
<td>Heap sort</td>
<td>No</td>
<td>Yes</td>
<td>Θ(n \log n)</td>
</tr>
<tr>
<td>Insertion sort</td>
<td>Yes</td>
<td>Yes</td>
<td>Θ(n^2)</td>
</tr>
<tr>
<td>Selection sort</td>
<td>No</td>
<td>Yes</td>
<td>Θ(n^2)</td>
</tr>
<tr>
<td>Counting sort</td>
<td>Yes</td>
<td>No</td>
<td>Θ(n + k) or Θ(n) if k ∈ O(n)</td>
</tr>
<tr>
<td>Radix sort</td>
<td>Yes</td>
<td>No</td>
<td>Θ(dn/\log n)</td>
</tr>
</tbody>
</table>

2. Counting sort.
 The algorithm will still sort correctly, but it is no longer a stable sorting algorithm. This can be seen using the example provided during lecture.

3. Sorting in place in linear time.
 3a. This can be achieved using counting sort.
 3b. This can be achieved by calling the procedure Partition on the array, using value 0 (or more safely, 0.5) as a pivot.
 3c. This can be achieved using insertion sort.

4. Algorithm design.
 This can be achieved using radix sort, using n as the radix. Or equivalently, partition each number into two \([\log_2 n]\) bits numbers; then apply counting sort to the least significant \([\log_2 n]\) bits followed by applying counting sort to the most significant \([\log_2 n]\) bits. The running time of radix sort is \((n + 2^r)d/r\), where \(r = \lceil \log_2 n \rceil\) and \(d = \lceil \log_2(n^2) \rceil\). Therefore, \((n + 2^r)d/r \approx 4n = \Theta(n)\)

6. Largest \(i\) numbers in sorted order.
 Strategy (a) takes \(\Theta(n \log n) + \Theta(i) = \Theta(n \log n)\) time with merge sort, or \(\Theta(n \log n)\) expected running time with quick sort.
 Strategy (b) takes \(\Theta(n) + \Theta(i \log n)\) time.
 Assuming the randomized select algorithm is used, strategy (c) takes \(\Theta(n) + \Theta(i \log i)\) expected time, but the worst case could be \(\Theta(n^2)\).
 When \(i \in \Theta(n)\), strategy (a) and (b) have the same worst-case running time \(\Theta(n \log n)\) (using merge sort for (a)), while (c) can be \(\Theta(n^2)\) in the worst case. All three strategies are expected to be \(\Theta(n \log n)\) in practice.
 For smaller \(i\), (b) and (c) is in general more efficient than (a). When \(n\) is much larger than \(i\), strategy (c) is expected to be more efficient than (b) in practice, because of the relatively larger constant factor associated with buildHeap.
5. Order Statistics.

\[i = 4 \quad 6 \quad 3 \quad 16 \quad 11 \quad 7 \quad 17 \quad 14 \quad 8 \]

\[k=2, \quad i = 4 > k \]
So take the right subarray and
new \(i = 4 - k = 2 \)

\[3 \quad 6 \quad 16 \quad 11 \quad 7 \quad 17 \quad 14 \quad 8 \]

\[k=5, \quad i = 2 < k, \]
So take the left subarray and still
have \(i = 2 \)

\[14 \quad 11 \quad 7 \quad 8 \quad 16 \quad 17 \]

\[k=4, \quad i = 2 < k \]
So take the left subarray and still
have \(i = 2 \)

\[11 \quad 7 \quad 8 \quad 14 \]

\[k=3, \quad i = 2 < k \]
So take the left subarray and still
have \(i = 2 \)

\[8 \quad 7 \quad 11 \]

\[k=2, \quad i = 2 = k \]
Done! Return 8.

7. Extra credit.

Here I show an informal analysis where floors and ceilings are ignored. In other words, I assume \(n \) is divisible by any number.

When the elements are divided into groups of 7, there will be \(n/7 \) groups, and there will be at least \(4 \times n/7 / 2 = 2n/7 \) elements that are no greater than the median of the group medians. (In half of the \(n/7 \) groups, each group contains four elements that are less than or equal to the corresponding group medians, which are no greater than the median of the medians.) Similarly, there will be at least \(2n/7 \) elements that are no less than the median of the medians. After partitioning the elements using the median of the medians as the pivot, the larger subarray can have at most \(n - 2n/7 = 5n/7 \) elements. Therefore, in the worst case, the running time of the SELECT algorithm can be computed using the following recurrence:

\[T(n) = T(n/7) + T(5n/7) + n, \]
where the first recursive term, \(T(n/7) \), is the time needed to find the median of the \(n/7 \) group medians, and the second recursive term, \(T(5n/7) \), is the time needed to recursively apply SELECT to the larger subarray, and \(n \) is the time for partition.

Using the recursion-tree method it can be shown that the cost of each level is a decreasing geometric series, with a decreasing factor \(5/7 + 1/7 = 6/7 \). Therefore, the total sum is \(\Theta(n) \). This can also be proved by the substitution method.

If we use groups of 3 instead, there will be \(n/3 \) groups, and there will be at least \(2 \times n/3 / 2 = n/3 \) elements that are no greater than the median of the medians, and similarly at least \(n/3 \) elements that are no less than the median of the medians. Using the median of the medians as the pivot, we can guarantee that the larger array can contain at most \(n - n/3 = 2n/3 \) elements. Therefore, the worst-case running time of the algorithm is \(T(n) = T(n/3) + T(2n/3) + n \), where \(T(n/3) \) is for finding the median of the medians and \(T(2n/3) \) is for applying SELECT recursively on the larger subarray. This recurrence solves to \(T(n) = \Theta(n \log n) \).