Data Mining
Practical Machine Learning Tools and Techniques

Slides for Chapter 3 of Data Mining by I. H. Witten, E. Frank and M. A. Hall
Input: Concepts, instances, attributes

- Terminology
- What’s a concept?
 - Classification, association, clustering, numeric prediction
- What’s in an example?
 - Relations, flat files, recursion
- What’s in an attribute?
 - Nominal, ordinal, interval, ratio
- Preparing the input
 - ARFF, attributes, missing values, getting to know data
Components of the input:

- **Concepts**: kinds of things that can be learned
 - Aim: intelligible and operational concept description

- **Instances**: the individual, independent examples of a concept
 - Note: more complicated forms of input are possible

- **Attributes**: measuring aspects of an instance
 - We will focus on nominal and numeric ones
What’s a concept?

- **Styles of learning:**
 - Classification learning: predicting a discrete class
 - Association learning: detecting associations between features
 - Clustering: grouping similar instances into clusters
 - Numeric prediction: predicting a numeric quantity

- **Concept:** thing to be learned
- **Concept description:** output of learning scheme
Classification learning

- Example problems: weather data, contact lenses, irises, labor negotiations
- Classification learning is *supervised*
 - Scheme is provided with actual outcome
- Outcome is called the *class* of the example
- Measure success on fresh data for which class labels are known (*test data*)
- In practice success is often measured subjectively
Association learning

• Can be applied if no class is specified and any kind of structure is considered “interesting”

• Difference to classification learning:
 ♦ Can predict any attribute’s value, not just the class, and more than one attribute’s value at a time
 ♦ Hence: far more association rules than classification rules
 ♦ Thus: constraints are necessary
 • Minimum coverage and minimum accuracy
Clustering

- Finding groups of items that are similar
- Clustering is *unsupervised*
 - The class of an example is not known
- Success often measured subjectively

<table>
<thead>
<tr>
<th></th>
<th>Sepal length</th>
<th>Sepal width</th>
<th>Petal length</th>
<th>Petal width</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.1</td>
<td>3.5</td>
<td>1.4</td>
<td>0.2</td>
<td>Iris setosa</td>
</tr>
<tr>
<td>2</td>
<td>4.9</td>
<td>3.0</td>
<td>1.4</td>
<td>0.2</td>
<td>Iris setosa</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>51</td>
<td>7.0</td>
<td>3.2</td>
<td>4.7</td>
<td>1.4</td>
<td>Iris versicolor</td>
</tr>
<tr>
<td>52</td>
<td>6.4</td>
<td>3.2</td>
<td>4.5</td>
<td>1.5</td>
<td>Iris versicolor</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>101</td>
<td>6.3</td>
<td>3.3</td>
<td>6.0</td>
<td>2.5</td>
<td>Iris virginica</td>
</tr>
<tr>
<td>102</td>
<td>5.8</td>
<td>2.7</td>
<td>5.1</td>
<td>1.9</td>
<td>Iris virginica</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Iris virginica
Numeric prediction

- Variant of classification learning where “class” is numeric (also called “regression”)
- Learning is supervised
 - Scheme is being provided with target value
- Measure success on test data

<table>
<thead>
<tr>
<th>Outlook</th>
<th>Temperature</th>
<th>Humidity</th>
<th>Windy</th>
<th>Play-time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunny</td>
<td>Hot</td>
<td>High</td>
<td>False</td>
<td>5</td>
</tr>
<tr>
<td>Sunny</td>
<td>Hot</td>
<td>High</td>
<td>True</td>
<td>0</td>
</tr>
<tr>
<td>Overcast</td>
<td>Hot</td>
<td>High</td>
<td>False</td>
<td>55</td>
</tr>
<tr>
<td>Rainy</td>
<td>Mild</td>
<td>Normal</td>
<td>False</td>
<td>40</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
What’s in an example?

- **Instance**: specific type of example
 - Thing to be classified, associated, or clustered
 - Individual, independent example of target concept
 - Characterized by a predetermined set of attributes

- **Input to learning scheme**: set of instances/dataset
 - Represented as a single relation/flat file

- **Rather restricted form of input**
 - No relationships between objects

- **Most common form in practical data mining**
A family tree

Peter M = Peggy F

Steven M Graham M Pam F = Ian M Pippa F

Ray M

Brian M

Anna F Nikki F
Family tree represented as a table

<table>
<thead>
<tr>
<th>Name</th>
<th>Gender</th>
<th>Parent1</th>
<th>parent2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peter</td>
<td>Male</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Peggy</td>
<td>Female</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Steven</td>
<td>Male</td>
<td>Peter</td>
<td>Peggy</td>
</tr>
<tr>
<td>Graham</td>
<td>Male</td>
<td>Peter</td>
<td>Peggy</td>
</tr>
<tr>
<td>Pam</td>
<td>Female</td>
<td>Peter</td>
<td>Peggy</td>
</tr>
<tr>
<td>Ian</td>
<td>Male</td>
<td>Grace</td>
<td>Ray</td>
</tr>
<tr>
<td>Pippa</td>
<td>Female</td>
<td>Grace</td>
<td>Ray</td>
</tr>
<tr>
<td>Brian</td>
<td>Male</td>
<td>Grace</td>
<td>Ray</td>
</tr>
<tr>
<td>Anna</td>
<td>Female</td>
<td>Pam</td>
<td>Ian</td>
</tr>
<tr>
<td>Nikki</td>
<td>Female</td>
<td>Pam</td>
<td>Ian</td>
</tr>
</tbody>
</table>
The “sister-of” relation

<table>
<thead>
<tr>
<th>First person</th>
<th>Second person</th>
<th>Sister of?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peter</td>
<td>Peggy</td>
<td>No</td>
</tr>
<tr>
<td>Peter</td>
<td>Steven</td>
<td>No</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Steven</td>
<td>Peter</td>
<td>No</td>
</tr>
<tr>
<td>Steven</td>
<td>Graham</td>
<td>No</td>
</tr>
<tr>
<td>Steven</td>
<td>Pam</td>
<td>Yes</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Ian</td>
<td>Pippa</td>
<td>Yes</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Anna</td>
<td>Nikki</td>
<td>Yes</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Nikki</td>
<td>Anna</td>
<td>Yes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>First person</th>
<th>Second person</th>
<th>Sister of?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steven</td>
<td>Pam</td>
<td>Yes</td>
</tr>
<tr>
<td>Graham</td>
<td>Pam</td>
<td>Yes</td>
</tr>
<tr>
<td>Ian</td>
<td>Pippa</td>
<td>Yes</td>
</tr>
<tr>
<td>Brian</td>
<td>Pippa</td>
<td>Yes</td>
</tr>
<tr>
<td>Anna</td>
<td>Nikki</td>
<td>Yes</td>
</tr>
<tr>
<td>Nikki</td>
<td>Anna</td>
<td>Yes</td>
</tr>
</tbody>
</table>

All the rest No

Closed-world assumption
A full representation in one table

First person		Second person						
Name	**Gender**	**Parent1**	**Parent2**	**Name**	**Gender**	**Parent1**	**Parent2**	**Sister of?**
Steven Graham	Male	Peter	Peggy	Pam	Female	Peter	Peggy	Yes
Ian	Male	Grace	Ray	Pippa	Female	Grace	Ray	Yes
Brian	Male	Grace	Ray	Pippa	Female	Grace	Ray	Yes
Anna	Female	Pam	Ian	Nikki	Female	Pam	Ian	Yes
Nikki	Female	Pam	Ian	Anna	Female	Pam	Ian	Yes

All the rest

If second person’s gender = female and first person’s parent = second person’s parent then sister-of = yes
Generating a flat file

- Process of flattening called “denormalization”
 - Several relations are joined together to make one
- Possible with any finite set of finite relations
- Problematic: relationships without pre-specified number of objects
 - Example: concept of *nuclear-family*
- Denormalization may produce spurious regularities that reflect structure of database
 - Example: “supplier” predicts “supplier address”
The “ancestor-of” relation

<table>
<thead>
<tr>
<th>First person</th>
<th></th>
<th></th>
<th>Second person</th>
<th></th>
<th></th>
<th>Ancestor of?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Gender</td>
<td>Parent1</td>
<td>Parent2</td>
<td>Name</td>
<td>Gender</td>
<td>Parent1</td>
</tr>
<tr>
<td>Peter</td>
<td>Male</td>
<td>?</td>
<td>?</td>
<td>Steven</td>
<td>Male</td>
<td>Peter</td>
</tr>
<tr>
<td>Peter</td>
<td>Male</td>
<td>?</td>
<td>?</td>
<td>Pam</td>
<td>Female</td>
<td>Peter</td>
</tr>
<tr>
<td>Peter</td>
<td>Male</td>
<td>?</td>
<td>?</td>
<td>Anna</td>
<td>Female</td>
<td>Pam</td>
</tr>
<tr>
<td>Peter</td>
<td>Male</td>
<td>?</td>
<td>?</td>
<td>Nikki</td>
<td>Female</td>
<td>Pam</td>
</tr>
<tr>
<td>Pam</td>
<td>Female</td>
<td>Peter</td>
<td>Peggy</td>
<td>Nikki</td>
<td>Female</td>
<td>Pam</td>
</tr>
<tr>
<td>Grace</td>
<td>Female</td>
<td>?</td>
<td>?</td>
<td>Ian</td>
<td>Male</td>
<td>Grace</td>
</tr>
<tr>
<td>Grace</td>
<td>Female</td>
<td>?</td>
<td>?</td>
<td>Nikki</td>
<td>Female</td>
<td>Pam</td>
</tr>
</tbody>
</table>

Other positive examples here

All the rest

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>No</th>
</tr>
</thead>
</table>

Data Mining: Practical Machine Learning Tools and Techniques (Chapter 2)
Recursion

- Infinite relations require recursion

 If person1 is a parent of person2
 then person1 is an ancestor of person2

 If person1 is a parent of person2
 and person2 is an ancestor of person3
 then person1 is an ancestor of person3

- Appropriate techniques are known as “inductive logic programming”
 - (e.g. Quinlan’s FOIL)
 - Problems: (a) noise and (b) computational complexity
Multi-instance Concepts

• Each individual example comprises a set of instances
 ♦ All instances are described by the same attributes
 ♦ One or more instances within an example may be responsible for its classification
• Goal of learning is still to produce a concept description
• Important real world applications
 ♦ e.g. drug activity prediction
What’s in an attribute?

- Each instance is described by a fixed predefined set of features, its “attributes”
- But: number of attributes may vary in practice
 - Possible solution: “irrelevant value” flag
- Related problem: existence of an attribute may depend of value of another one
- Possible attribute types (“levels of measurement”):
 - Nominal, ordinal, interval and ratio
Nominal quantities

- Values are distinct symbols
 - Values themselves serve only as labels or names
 - *Nominal* comes from the Latin word for name
- Example: attribute “outlook” from weather data
 - Values: “sunny”, “overcast”, and “rainy”
- No relation is implied among nominal values (no ordering or distance measure)
- Only equality tests can be performed
Ordinal quantities

- Impose order on values
- But: no distance between values defined
- Example:
 attribute “temperature” in weather data
 - Values: “hot” > “mild” > “cool”
- Note: addition and subtraction don’t make sense
- Example rule:
 \[\text{temperature} < \text{hot} \implies \text{play} = \text{yes} \]
- Distinction between nominal and ordinal not always clear (e.g. attribute “outlook”)
Interval quantities

- Interval quantities are not only ordered but measured in fixed and equal units.
- Example 1: attribute “temperature” expressed in degrees Fahrenheit.
- Example 2: attribute “year”.
- Difference of two values makes sense.
- Sum or product doesn’t make sense.
 - Zero point is not defined!
Ratio quantities

- Ratio quantities are ones for which the measurement scheme defines a zero point
- Example: attribute “distance”
 - Distance between an object and itself is zero
- Ratio quantities are treated as real numbers
 - All mathematical operations are allowed
- But: is there an “inherently” defined zero point?
 - Answer depends on scientific knowledge (e.g. Fahrenheit knew no lower limit to temperature)
Attribute types used in practice

- Most schemes accommodate just two levels of measurement: nominal and ordinal
- Nominal attributes are also called “categorical”, “enumerated”, or “discrete”
 - But: “enumerated” and “discrete” imply order
- Special case: dichotomoy (“boolean” attribute)
- Ordinal attributes are called “numeric”, or “continuous”
 - But: “continuous” implies mathematical continuity
Metadata

- Information about the data that encodes background knowledge
- Can be used to restrict search space
- Examples:
 - Dimensional considerations
 (i.e. expressions must be dimensionally correct)
 - Circular orderings
 (e.g. degrees in compass)
 - Partial orderings
 (e.g. generalization/specialization relations)
Preparing the input

- Denormalization is not the only issue
- Problem: different data sources (e.g. sales department, customer billing department, …)
 - Differences: styles of record keeping, conventions, time periods, data aggregation, primary keys, errors
 - Data must be assembled, integrated, cleaned up
 - “Data warehouse”: consistent point of access
- External data may be required (“overlay data”)
- Critical: type and level of data aggregation
The ARFF format

% ARFF file for weather data with some numeric features
%
@relation weather

@attribute outlook {sunny, overcast, rainy}
@attribute temperature numeric
@attribute humidity numeric
@attribute windy {true, false}
@attribute play? {yes, no}

@data
sunny, 85, 85, false, no
sunny, 80, 90, true, no
overcast, 83, 86, false, yes
...
Additional attribute types

• ARFF supports *string* attributes:

  ```
  @attribute description string
  ```

 ✷ Similar to nominal attributes but list of values is not pre-specified

• It also supports *date* attributes:

  ```
  @attribute today date
  ```

 ✷ Uses the ISO-8601 combined date and time format `yyyy-MM-dd-THH:mm:ss`
Relational attributes

- Allow multi-instance problems to be represented in ARFF format
 - The value of a relational attribute is a *separate* set of instances

```plaintext
@attribute bag relational
  @attribute outlook { sunny, overcast, rainy }
  @attribute temperature numeric
  @attribute humidity numeric
  @attribute windy { true, false }
@end bag
```

- Nested attribute block gives the structure of the referenced instances
% Multiple instance ARFF file for the weather data
%
@relation weather

@attribute bag_ID { 1, 2, 3, 4, 5, 6, 7 }
@attribute bag relational
 @attribute outlook {sunny, overcast, rainy}
 @attribute temperature numeric
 @attribute humidity numeric
 @attribute windy {true, false}
 @attribute play? {yes, no}
@end bag

@data
1, "sunny, 85, 85, false\nsunny, 80, 90, true", no
2, "overcast, 83, 86, false\nrainy, 70, 96, false", yes
...
Sparse data

- In some applications most attribute values in a dataset are zero
 - E.g.: word counts in a text categorization problem
- ARFF supports sparse data

\[
\begin{align*}
0, &
26, 0, 0, 0, 0, 63, 0, 0, 0, "class A" \\
0, &
0, 0, 0, 42, 0, 0, 0, 0, 0, "class B" \\
\{1 &
26, 6 63, 10 "class A"\} \\
\{3 &
42, 10 "class B"\}
\end{align*}
\]

- This also works for nominal attributes (where the first value corresponds to “zero”)
Attribute types

- Interpretation of attribute types in ARFF depends on learning scheme
 - Numeric attributes are interpreted as
 - ordinal scales if less-than and greater-than are used
 - ratio scales if distance calculations are performed (normalization/standardization may be required)
 - Instance-based schemes define distance between nominal values (0 if values are equal, 1 otherwise)
- Integers in some given data file: nominal, ordinal, or ratio scale?
Nominal vs. ordinal

• Attribute “age” nominal

If age = young and astigmatic = no
 and tear production rate = normal
 then recommendation = soft

If age = pre-presbyopic and astigmatic = no
 and tear production rate = normal
 then recommendation = soft

• Attribute “age” ordinal
 (e.g. “young” < “pre-presbyopic” < “presbyopic”)

If age ≤ pre-presbyopic and astigmatic = no
 and tear production rate = normal
 then recommendation = soft
Missing values

- Frequently indicated by out-of-range entries
 - Types: unknown, unrecorded, irrelevant
 - Reasons:
 - malfunctioning equipment
 - changes in experimental design
 - collation of different datasets
 - measurement not possible

- Missing value may have significance in itself (e.g. missing test in a medical examination)
 - Most schemes assume that is not the case: “missing” may need to be coded as additional value
Inaccurate values

- Reason: data has not been collected for mining it
- Result: errors and omissions that don’t affect original purpose of data (e.g. age of customer)
- Typographical errors in nominal attributes \Rightarrow values need to be checked for consistency
- Typographical and measurement errors in numeric attributes \Rightarrow outliers need to be identified
- Errors may be deliberate (e.g. wrong zip codes)
- Other problems: duplicates, stale data
Getting to know the data

• Simple visualization tools are very useful
 ♦ Nominal attributes: histograms (Distribution consistent with background knowledge?)
 ♦ Numeric attributes: graphs (Any obvious outliers?)
• 2-D and 3-D plots show dependencies
• Need to consult domain experts
• Too much data to inspect? Take a sample!