
A Task Morphing Framework For Energy
Consumption and Reliability Tradeoffs

Sathish Gopalakrishnan
Department of Electrical & Computer Engineering

The University of British Columbia

Abstract—Morpheus is a framework that permits tasks to adapt
their execution times (and consequently, energy consumption)
and reliability guarantees through the use of (developer-supplied)
program approximations and compiler-driven synthesis of reli-
ability mechanisms. Morpheus parametrizes different execution
sequences of a task, and through its runtime system enables the
execution of suitable approximations and reliability mechanisms.
Morpheus supports custom resource allocation policies that are
invoked to decide on suitable parameters for a task at runtime.
In the context of real-time computing, Morpheus allows a task
to produce solutions with acceptable error and gains execution
time for methods that increase the reliability of the system.

I. Introduction

Morpheus is a programming language and runtime frame-
work that we propose to enable application developers to
specify and make tradeoffs between energy consumption (or
execution time), solution quality and reliability.

Timeliness and reliability are two important (non-
functional) properties of a computing system. These prop-
erties are important because of an emphasis on quality of
service in computing. This emphasis, while typical in safety-
critical/mission-critical systems with real-time constraints, is
spreading to a broader class of computing applications. Re-
liability and availability of computing platforms are affected
by changes in semiconductor device technology. The changes
in device technology have led to smaller devices but have
had some downsides: small semiconductor devices are more
vulnerable to faults than large semiconductor devices and the
manufacturing process for smaller devices is also more error-
prone. Additionally, these tradeoffs need to be made with joint
consideration for energy consumption, which has become a
significant constraint for computing systems today.

We present an approach to managing energy consumption
and reliability tradeoffs by controlling execution time and
solution quality in certain computational tasks. We make the
assumption that controlling the execution time of a task is
related to controlling its energy consumption. We do not make
any assumptions about the relationship between execution time
and energy consumption other than that longer execution times
imply a higher energy consumption at a given CPU speed.

The premises of our work are two-fold. The first premise
is an observation concerning hardware reliability. The second
premise relates to quality of service from a solution accuracy
viewpoint. We will discuss the two foundational assumptions
and then present the guiding principle behind Morpheus.

Premise 1. Hardware faults have a variety of causes and
conventional wisdom around hardware design revolves around
presenting a fault-free hardware platform abstraction to the
software layer. For example, some transient or even intermit-
tent faults can be handled through redundancy in the micro-
processing units. There is a high cost of development (and

deployment) associated with hardware-oriented techniques for
fault tolerance. It is also likely that only a small fraction of
applications and users require high levels of dependability.
Thus specializing hardware solutions for a small user popula-
tion leads to elevated prices for reliable computing hardware;
the higher prices are a significant stumbling block in many
application domains. Hardware techniques are often rigid and
may not offer a sufficient space for tradeoffs between some
of the key metrics in systems design such as performance,
correctness and energy consumption.

Premise 2. In many applications, particularly in applications
dealing with multimedia content, signal processing and control
algorithms, it is possible to sacrifice program correctness or
accuracy for savings in task execution time. The savings
achieved in this fashion can then be used to integrate software-
driven dependability mechanisms.

Software solutions for improving dependability can be
flexibly deployed and excluded when not needed. There are
several software-based approaches to improving application
dependability such as recovery blocks and replicated execu-
tion. Some techniques, such as bounds checking for arrays
and pointer checking, address more specific software-level
problems. None of these techniques provide complete fault
coverage and recovery but a judicious mix of techniques can
improve reliability significantly. Additionally, it is possible to
handle software-related errors through software mechanisms
because it is difficult to implement suitable reasoning methods
at the hardware level.

In particular, Morpheus permits switching between variants
of a task, which we also refer to as morphing, based on
runtime information, wherein an imprecise version of the
task, with reduced running time, can be executed – with
some manner of redundancy – to improve reliability. The
Morpheus approach involves some program modifications that
can then be exploited at runtime to identify suitable methods
for execution. At runtime, Morpheus uses monitoring and a
selection mechanism to choose appropriate program transfor-
mations (morphs). During the compilation phase, Morpheus
automatically generates some variants for a program using
techniques for improving reliability (e.g., over-allocating space
for stacks and heaps) that have been described by others in
prior work. Experimental evaluation suggests that Morpheus
as a framework for task morphing that can be realized with
tolerable overhead.

The principal contribution of this work is to demonstrate the
feasibility of such runtime adaptation by realizing a holistic
framework that involves programming language extensions,
compilation support and a suitable runtime system, and to
demonstrate that the overheads of runtime adaptation need
not be high. In addition, we suggest that using user-space
schedulers is a suitable approach to enabling system adapta-
tion.

Deployment Stage

Morpheus
<L>

source
file(s)

Morpheus
Compilation

Pass

Morpheus-
enhanced Binary

Executable

Morpheus
Runtime System

Fig. 1. An overview of the Morpheus system: The developer supplies source code in language L with Morpheus annotations. The source code, post-
compilation, results in an executable that includes several alternative implementations of the same code block. The alternatives are a result of approximations
and additional dependability-enhancing code. During execution, using parameter values that are set via the runtime system, appropriate code blocks are
selected.

II. The Morpheus System

A. Overview

In Morpheus (Figure 1), an application developer can spec-
ify multiple versions of certain methods, each with varying
levels of approximation. For example, when implementing
the Discrete Fourier Transform one can achieve different
degrees of approximation through approximations of the sin
and cos functions. These approximations can yield significant
reductions in task execution time. The program, with all the
approximations in place, can then be compiled and certain
transformations can be applied during this phase to increase
fault resilience. An example, in this phase, would be the alloca-
tion of padding space to array declarations or the introduction
of additional code to handle reads to null pointers. Finally,
during program execution, based on operating conditions such
as system utilization, the appropriate version of a function
can be invoked. With the Discrete Fourier Transform, for
instance, when utilization is high but reliability is important
then an approximated sin function can be utilized with
additional reliability mechanisms woven in.

Morpheus, as outlined in the example above, has three
aspects. The first aspect is the set of annotations to the
programming language that permit a developer to specify the
different variants for the same functionality as well as to
suggest valid/invalid reliability transformations. The second
aspect is the modification to the compilation phase that results
in automatic generation of reliability enhancements. The last
aspect is the runtime system that enables situation-aware
adaptation.

We now proceed to detail each aspect of the Morpheus
system. Our implementation targets applications developed
in C and C++. We use the clang/LLVM compilation in-
frastructure [9] and the Minix 3 operating system [21] for
our implementation although the approach is applicable to
any programming language and operating system. In this
introduction to Morpheus, we will discuss some of the design
choices and then present some of the implementation issues
that are specific to the chosen platforms.

B. Programming Language Extensions

1) Design: The goal of this part of the effort is to enable
programmers to specify potential approximations that reduce
execution time with some (tolerable) reduction in solution
quality. We envision two methods of expressing approxima-
tions. The first method is through the exposure of specific

parameters such as loop bounds, loop increments and, as
may be the case with standard polynomial time approximation
schemes, parameters that affect the approximation ratio. The
second method is the specification of alternative code blocks
that represent variations of the same functionality. At runtime
a set of parameter values will have to be chosen in the first
method and in the second method suitable variations should
be chosen.

The primary purpose of the programming language exten-
sions is to expose specific parameters concerning program
approximations. These parameters are then set at runtime.
Similarly, such parametrization permits a compiler to generate
specified reliability mechanisms. The syntax we chose for ex-
pressing alternatives is simplistic and one can easily construct
more sophisticated solutions to the programming language
design problem.

2) Implementation: The programming language extensions
have been implemented for C/C++ and preprocessing is per-
formed using clang/LLVM [9] to generate standard C/C++
code needed for the additional blocks.

C. Code Generation

1) Design: Morpheus takes developer-supplied source code
and produces an executable program that includes the different
approximations as well as additional methods to tolerate errors
(arising in software and hardware).

Generating code for the different approximations is easily
achieved because the approximations are clearly parametrized
and developer-supplied. On the other hand, to enhance relia-
bility we rely on a set of techniques that have been proposed
in prior work (e.g., failure-oblivious computing, redundant
execution).

The motivation behind Morpheus is not to develop new
fault detection and recovery techniques but to enable flexible
tradeoffs between solution quality and reliability. In principle
new reliability mechanisms may be added.

We implement automatic transformations for the following
techniques that have been proposed to target different errors.
• Increase memory allocation (D-IMA) [14]: In this

method, we increase stack allocations and heap space
allocations to deal with overflow issues.

• Failure-oblivious computing (D-FOC) [18]: This is an
implementation of a subset of techniques from the work
on failure-oblivious computing. In this method, we deal
with two types of pointer access problems. Reads to null

int f(int x) {
 int N, STEP;
 int y = 0;
 int stat = _get_param_val(N);
 if (stat == 0) N = 20;
 stat = _get_param_val(STEP);
 if (stat == 0) STEP = 1;
 stat = _get_param_val(approx_f);
 if (stat == 0) approx_f = 0;
 switch (approx_f)
 {
 case 0:
 for (i=0; i < N; ++i)
 {
 // manipulate x
 }
 case 1: // alternative version of f
 // with some loss in solution quality
 }
 return y;
}

int f(int x) {
 ##PARAM int N=20
 ##PARAM int STEP=1
 int y = 0;
 ##PARAM UPDATE N, STEP
 ##BEGIN VARIANTS approx_f=0
 ##VARIANT approx_f=0
 for (i=0; i < N; i += STEP)
 {
 // manipulate x
 }

 ##VARIANT approx_f=1
 // alternative version of f
 // with some loss in solution quality
 ##END VARIANTS

 return y;
}

int f_REL1(int x) {
 …
}

int f_REL2(int x) {
 …
}

int f_REL3(int x) {
 …
}

Fig. 2. In this example, we illustrate the two types of approximations that a developer may want to expose. The parameter N represents the number of loop
iterations and one can perform fewer iterations if needed. Similarly, the function f () has two variants that are parmetrized; one of these variants will be chosen
at runtime. The developer supplies the source code – in C with Morpheus annotations – on the left and on the right we illustrate the equivalent code that
is generated after transformations. This example uses C code to show the transformation although an executable binary is generated by our implementation.
Reliability mechanisms – not shown as code – are automatically added, leading to one version (e.g., f _REL1()) per reliability mechanism.

pointers are ignored and a 0 is returned as the default
value. Writes to null pointers are ignored.

• Selective memory replication (D-SMR) [13]: This method
uses a modified memory allocator to maintain replicas
of critical variables. This permits detection and recov-
ery from some memory errors (and memory corruption
attacks).

• Software-controlled fault tolerance (D-SFT) [17]: This
method uses triple redundant code execution and majority
voting before critical instructions to detect and tolerate
faults.

2) Implementation: Code generation is performed using the
LLVM compilation framework. We use LLVM to obtain an
intermediate representation of the source code, and then we
systematically add additional checks and actions. Of the meth-
ods that we implemented, D-SMR and D-SFT are the most
sophisticated. D-SMR requires a modified memory allocator
but is backward-compatible with standard dynamic memory
allocation techniques.

In this phase, we also add, at appropriate developer-specified
points, calls that retrieve parameter values from a system
service. These values are set at runtime.

The number of versions of a task that are generated is a
product of the number of program alternatives and the number
of reliability mechanisms. At any given time instant (during
runtime) only one of the reliability mechanisms will be active.
This choice is specific to our current implementation. It may
be possible to combine some of the reliability mechanisms
automatically or based on developer directives in a future
implementation.

D. Runtime System

1) Design: The Morpheus runtime system can be divided
into three components (Figure 3). The first component is a
monitor that determines the current level of resource usage
and tracks other execution-time events such as task failures.
Data collected by the monitor is then utilized by the second
component, the decision engine. The decision engine applies
developer-supplied rules to the data obtained from the monitor
and emits different parameter settings. The third component
of the runtime system is a parameter management system
that accepts settings from the decision engine and supplies

Morpheus Runtime System

Monitoring Decision
Engine

Parameter
Manager

Task/Process

Fig. 3. The Morpheus Runtime System. At runtime, statistics are gathered
regarding system and task performance. These are then used by a decision
manager to set code-level task parameters that guide the approximations and
the reliability mechanisms. A parameter manager permits a process to access
parameters at runtime.

Kernel Clock Task Server
Task

Disk
Driver

Printer
Driver

TTY
Driver

Network
Driver

File
Server

Process
Manager Scheduler ...

Shell User
Process

User
Process

User
Process

Kernel
Space

User
Space

Fig. 4. Minix 3 architecture: The layering of processes in userspace is
logical; all processes are treated similarly by the kernel. Synchronous message
passing with rendezvous is used for communication between processes and
for communication between processes and the kernel.

these parameters, on demand, to executing processes. Whereas
monitoring and parameter management can be considered
generic services, the decision engine relies on rules that are
specific to a task/process that is being controlled. We separate
decision making from the actual process being controlled
because the rules or policies for controlling a task are separate
from the task itself. The separation of policies and tasks allows
the two entities to be modified, to a large extent, independently.

2) Implementation: There are several possible implementa-
tion tactics for the runtime system. With Minix 3 as the oper-
ating system of choice, we were able to use some existing OS
features to implement Morpheus. Minix 3 is microkernel-based
operating system (Figure 4) with an emphasis on reliability [6]
and this emphasis aligns with our goal of aiding software

developers in building a system with adaptable dependability.
Minix 3 delegates process scheduling to a userspace sched-

uler [20]. A process is allocated a time slice (quantum) and
decisions about priority changes are made in userspace at the
end of a timeslice. One can associate a userspace scheduler
with each process or a group of processes. If there is no
userspace scheduler associated with a process then a default
scheduling policy (prioritized scheduling with round-robin
allocation among tasks at the same priority level) is applied.

The default implementation of userspace scheduling in
Minix 3 involves the userspace scheduler being invoked when
a process’ scheduling quantum expires. The userspace sched-
uler can then decide on how priorities should be modified
when a quantum expires. (For example, the scheduling policy
used in Minix 3 lowers the priority of a task by one level
every time it runs out of its quantum and then periodically
scans through the list of all processes that have been lowered in
priority and increases their priority by one level. This prevents
CPU-bound tasks from monopolizing the CPU [22].)

We modified Minix 3 to support periodic processes and the
earliest deadline first (EDF) scheduling policy to provide real-
time scheduling support to Minix 3. We do not detail these
modifications extensively because they have been performed
earlier as well [23], [11]. We added a method to enable the
kernel to call the userspace scheduler before a context switch
was made to a user process, and this event is used to set
parameters for the process to be executed. Parameters are set
for a process either when it executes for the first time (if the
task is not periodic) or at the start of every job instance for
periodic tasks.1 This restriction is achieved by maintaining a
bit of information in the process control block to indicate if a
process is being scheduled after preemption or whether a new
job instance is being scheduled.

When the userspace scheduler is called before a process is
executed, some parameters such as a task’s execution time
averaged over a time window as well as the overall CPU
utilization are passed to the scheduler as message contents
(because Minix 3 uses message passing). This data is used
to adjust the code-level parameters of the process. Thus the
decision engine, in our implementation, is part of the userspace
scheduler although alternative implementations are possible.
(We defer discussion regarding the specific resource allocation
policies we implemented the section on system evaluation.)

To pass parameters between the userspace scheduler and
the process(es) that it controls, we implement a variant of
the data store service that Minix 3 provides. The default data
store service allows device drivers and other system services to
save state (primarily for recovery from failures), and thus only
system services can write to and read from the default data
store. We implemented a parameter manager, which is really
a data store, that permits system services to read/write data
and user processes can only read data. During the compilation
phase, the appropriate system calls are added to a process’
code to retrieve parameters from the parameter manager.

We now summarize the timeline of events at runtime. When
the highest priority task that is eligible to run is selected, and
the process is being chosen for the first time or a new instance
of an existing periodic task is chosen, the associated userspace
scheduler is sent a message with monitor information. The
userspace scheduler uses monitor information and sets param-
eters via the parameter manager. Then, via the kernel, the
process begins execution and it can find new parameter values
through a system call (message) to the parameter manager.

1We impose this restriction because changing a job instance’s flow midway
through execution requires that the developer exercise much caution.

III. Design Rationale

Having described the architecture and implementation of
Morpheus, we now provide a discussion concerning the design
choices made. In this section we restrict attention to the
choices that have been made. Later we will address possible
extensions.

Target systems. In principle, Morpheus can be used in
hard real-time systems but the effort so far has been towards
supporting soft real-time systems. The broad assumption has
been that for such systems performance/timeliness is often
more important than reliability. Thus, when resources are
scarce Morpheus attempts to reduce execution times of tasks.
When extra resources are available – primarily CPU cycles
– then Morpheus capitalizes on the extra capacity to add
reliability mechanisms. This approach is suited to situations
when application developers release new versions of software
applications and additional checks for ensuring reliability
maybe useful in the early stages of deployment.

Software-only reliability mechanisms. We have chosen to
build a system that supports reliability mechanisms with no
additional hardware requirements. This choice is motivated
by our assumption about the target systems. By choosing to
improve soft real-time applications where the extra operations
for reliability are “preferred” but “not required” there is, im-
plicitly, the need to support commercial off-the-shelf hardware
components. Such COTS hardware typically does not have
additional hardware to increase reliability.

Separation of resource allocation policies and task execu-
tion. It is possible to explicitly include all the decision logic
that allows a task to adapt to different situations as part of the
application. Separating the policies from the application they
manage is useful for at least two reasons. The first reason is
that one can independently change the resource management
policies based on the expectations of solution quality and
reliability without rewriting the source code or recompiling
to obtain new application binaries. During deployment, one
may want to experiment with different policies or change
policies when some portion of the application is known to
be reliable. A second reason is that this separation permits
the system to manage resources across all tasks that are
executing concurrently. Hard-coding the adaptation strategy in
the application code will limit one’s ability to perform whole-
system optimization.

Reliability guarantees. Morpheus’ reliability guarantees are
only as good as the guarantees provided by the mechanisms
chosen for implementation. To ensure high reliability it may be
desirable to always run tasks with instruction-level redundancy
(D-SFT) for detection and recovery but there is a high cost to
such redundancy (more than twice the base execution time).
Morpheus permits for tradeoffs between reliability, solution
quality and system utilization. At this point the onus is on
system designers to identify suitable operating points and to
determine when the system switches from one operating point
to another.

Developer effort. Developers do need to specify differ-
ent approximations that are acceptable for their applications.
Whereas some work (such as loop perforation [7]) can auto-
mate the generation of approximations, we believe that there
are certain approximations that are currently difficult to syn-
thesize mechanically. As regards the program transformations
for enhancing reliability, most proposals, including the work
that we have selected for implementation, are generic. We,
therefore, expect that additional mechanisms can be added to
the compilation framework and can then be made available
to all applications without any increase in an application

developer’s effort.

IV. Evaluation

A. Evaluation Metrics

Having indicated the rationale for several choices made in
the design of Morpheus, we now describe evaluation results for
the framework. Our goal is to evaluate Morpheus. Neither is
it our goal to evaluate techniques for enhancing reliability nor
is it our intention to evaluate the quality of approximations.
We will present some quantitative results along both these
directions to emphasize the motivation for the work but we
are primarily interested in the following metrics for assessing
Morpheus.
• Overhead: What is the additional cost of utilizing Mor-

pheus from a scheduling perspective?
• Adaptation: How does Morpheus adapt to changes in

resource utilization?
It is also important to note that the experimental results

are primarily to establish the viability of Morpheus as an
approach. We believe that it is possible to improve the per-
formance of Morpheus by choosing an alternative operating
system and by optimizing some of the techniques that we use.

B. Experimental Setup

We used a desktop system with an AMD Athlon 3700+
microprocessor running at 2.4 GHz. The system was provi-
sioned with 2GB RAM. We used Minix 3 (specifically Minix
3.2.0) with the modifications that were needed for Morpheus as
discussed earlier in the article. We chose this configuration to
represent a system that is not significantly resource constrained
and at the same time is not as powerful as systems that utilize
chip multiprocessors (or multicore processors).

C. Benchmarks

We selected some benchmark applications that offered op-
portunities for approximating solution quality and could be
hardened with reliability mechanisms. It is possible to use
Morpheus without using any approximations; in this situation,
whenever extra utilization is available to a task it can be
operated with additional reliability mechanisms. Similarly, it is
possible to use Morpheus with no reliability enhancements and
target only execution time savings (and consequently energy
savings) through the judicious application of approximations.
• Discrete Fourier transform (DFT): DFTs are common-

place in signal processing applications. Computing such
transforms requires evaluation sine and cosine functions
and these functions can be approximated by varying the
decimal precision in the computations. As a QoS metric,
we compute the normalized difference in each output
sample of DFT between the precise and approximated
versions.

• Eon [19]: Eon is a probabilistic ray tracer that is part of
the SPEC2000 benchmark suite. It works as follows: A
number of 3D lines (rays) are sent into a 3D polygonal
model. Intersections between the lines and the polygons
are computed, and new lines are generated to compute
light incident at these intersection points. The final result
of the computation is an image as seen by camera. The
computational demands of the program are much like a
traditional deterministic ray tracer as described in basic
computer graphics texts, but it has less memory coherence
because many of the random rays generated in the same
part of the code traverse very different parts of 3D space.

0

0.25

0.5

0.75

1

n=5 n=6 n=7 n=8 n=9 Default
0%

1.75%

3.5%

5.25%

7%

N
or

m
. e

xe
c.

 ti
m

e

QoS levels for Eon

Q
oS

 lo
ss

Exec. time
QoS loss

Fig. 5. Eon: QoS Loss vs. Execution Time. The probabilistic ray tracer,
Eon, uses n2 iterations to render an image. Using fewer iterations results in
execution time reduction with limit QoS loss.

0

0.25

0.5

0.75

1

3 5 7 12 14 20 23 Default
0%

0.2%

0.4%

0.6%

0.8%

N
or

m
. e

xe
c.

 ti
m

e
QoS levels for DFT

Q
oS

 lo
ss

Exec. time
QoS loss

Fig. 6. DFT: QoS Loss vs. Execution Time. For discrete Fourier transforms,
changes in the precision of sine and cosine functions result in execution time
savings with marginal QoS degradation. The QoS levels correspond to the
number of decimal places used in the computation.

Kajiya’s algorithm, which is one of the probabilistic
ray tracers that is part of the Eon benchmark uses n2

iterations but it is possible to terminate the algorithm
early with a loss in output fidelity. To quantify the QoS
loss of approximate versions, we compute the average
normalized difference of pixel values between the precise
and approximate versions.

Our benchmark list could have been longer but others have
shown, separately, the value of approximations (e.g., [2]) and
the value of reliability mechanisms (e.g., [17], [14]).

D. Evaluation Results

The first set of experiments show that it is possible to save
on execution time by accepting a drop in solution quality.
We demonstrate this with two benchmarks, Eon and DFT. We
used different levels of approximation and noted the changes
in execution time and solution quality for Eon (Figure 5) and
DFT (Figure 6). We used 120 different input data sets for each
benchmark.

The second set of experiments (Figure 7) captured the effect
of the different reliability mechanisms on the running times
of tasks. Taking the first two sets of experiments together, we
observe that there is sufficient space for trading off solution
quality for enhancing reliability.

The third set of experiments we performed were to measure
the runtime overhead of using Morpheus in the critical path
of switching from one process to another. When switching
from one process to another, the additional work involved is

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

D-IMA D-FOC D-SMR D-SFT

No
rm

al
ize

d
ex

ec
. t

im
e

in
cr

ea
se

DFT PNG Eon

Fig. 7. Overhead of Reliability Mechanisms. The change in execution times
for tasks depends on the reliability mechanism and the application.

the invocation of the userspace scheduler at the start and then
the actual transfer of control to the appropriate process. Then,
there is an extra step of potentially refreshing parameters when
the process starts. At the implementation level, in Minix 3,
the work involved can be translated to additional messages
and context switches. To identify the overhead of this step
we performed 10000 runs and used the processor’s timestamp
counter (TSC) to measure the additional time involved. In this
evaluation, the userspace scheduler does not actually make
any task adjustments. Any extra time used in deciding on
task parameters needs to be considered before choosing the
policy. We found that the additional overhead was no more
than 1.6µs. (By default, the context switch time with Minix 3
on our platform was no more than 1.1µs. With Morpheus, the
context switch time was no higher than 2.7µs.) This additional
overhead is incurred only once every period for a periodic task
in our current implementation.

The fourth set of experiments we performed demonstrates
how Morpheus can enable task morphing at runtime. We eval-
uated the impact of Morpheus on the benchmarks. For Eon and
DFT we added approximations. We implemented these tasks
as periodic tasks, and each task was provided with a worst-
case execution budget and a period. The Morpheus runtime
system was then allowed to decide on the execution times
of tasks using simple policies, and then set the parameters
corresponding to the chosen execution times. The execution
time budget therefore acts like a resource reservation. The
task periods were chosen to be long enough to permit the
basic implementation of a task – without any modifications
that Morpheus requires – to run at 10% utilization. Whenever
a task is allocated more than 10% CPU utilization there
are spare cycles that could be used for additional reliability
instrumentation.

We experimented with two policies for using the allocated
reservations. The policies attempt to maximize execution time
without violating the reservation.
• OptionalReliability: This policy never opted for degraded

solution quality but when sufficient CPU reservation was
available then it would select the reliability technique that
maximized execution time.

• QoSLoss+Reliability: This policy would pick the reliabil-
ity technique that maximized execution time while also
accepting degraded QoS.2

Morpheus is able to adapt to the available resource sup-
ply easily. As reservations are increased, Morpheus uses the
additional capacity to either improve QoS or add reliability
mechanisms (Figures 8).

2We assumed that a developer would never include as a candidate approx-
imation any method that degraded solution quality to unacceptable levels.

0%

15%

30%

45%

60%

10% 20% 30% 40% 50% 60% 70% 80% 90%

Ac
tu

al
 U

til
iz

at
io

n

Reservation

OptionalReliability
QoSLoss+Reliability

(a) DFT

0%

15%

30%

45%

60%

10% 20% 30% 40% 50% 60% 70% 80% 90%

Ac
tu

al
 U

til
iz

at
io

n

Reservation

OptionalReliability
QoSLoss+Reliability

(b) Eon

Fig. 8. Effect of Morpheus on Utilization. Given the resource reservation,
Morpheus selects the best version of a task to execute. This choice depends
on whether reliability is optional, in which case there is no drop in QoS, or
whether it is acceptable to use a lower QoS version and a reliability technique
without exceeding the reservation.

Morpheus is also able to perform the task morphing quickly.
In one experiment, we added to the reservation for a task when
a job instance was executing. Morpheus correctly invoked
additional reliability mechanisms for the next invocation of
the task to utilize the additional resource allocation.3

This initial experimental study of Morpheus suggests that it
is a feasible approach to making tradeoffs at runtime between
different aspects of a real-time system that are often in a
constant state of tension: execution time (and also energy
consumption), reliability and solution quality.

V. Related Work

Two noteworthy research projects that are closely aligned
with the Morpheus idea are (i) the Green system [2] for
principled use of approximations at the programming lan-
guage level (Microsoft Research) and (ii) the code perforation
project [7] (MIT). Green provides programming language sup-
port, in some ways similar to Morpheus, for a programmer to
specify different approximations and to perform QoS profiling
at runtime to select approximations that yield running time
reductions (or energy efficiency) with acceptable QoS loss.
With code perforation, it is possible to automatically realize
specific approximations. A special case of code perforation
is loop perforation, which results in omitting some loop
iterations because such omissions result in small solution

3We decided not to include a timeline graph to illustrate this effect because
of the limited value of such a graph.

quality loss. Morpheus explicitly tackles reliability issues and
uses the spare capacity created as a result of approximations
to execute code for fault detection and recovery. Additionally,
Morpheus explicitly permits the setting of runtime parameters
that influence program execution. This can be used to influence
per-job execution in the case of periodic tasks. Green does
not employ such techniques; the time window over which
Green makes changes to an executing task is much longer.
The code perforation project has resulted in the PowerDial
mechanism [8] that does permit limited adaptation every
planning interval. We also note that code perforation has been
considered in conjunction with fault recovery but primarily in
the context of using spare cycles for task re-execution when
an error occurs.

With an eye on building real-time systems, there have been
efforts that incorporate aspects of program approximation and
fault tolerance primitives with the scheduling of periodic tasks.
The imprecise computation model due to Liu et al. [10] used
the notion that tasks could be interrupted, if needed, after
a mandatory execution time with a loss on solution quality.
This idea is related to that of anytime algorithms [25], [24]
that have been of interest in the design and understanding
of control systems and artificial intelligence systems. From
a fault tolerance perspective, there has been extensive work
on scheduling job re-executions in the event of an error,
especially from Melhem, Mossé, et al. [5], [1], [12]. From an
implementation perspective, fault-tolerant real-time Mach [4]
is one operating system that was designed to support re-
scheduling of tasks when failures are encountered. There have
been very few other implementation efforts whereas there has
been a significant investment in analysis of scheduling policies.

This effort is also related to bridging the gap between
fault characterization, diagnosis of hardware faults [16], [3],
[15] and recovery; this work represents the next stage where
recovery mechanisms are enabled.

There are many other articles of interest in each of the areas
that Morpheus spans but we do not discuss all such work for
the sake of brevity.

VI. Conclusions

We believe that runtime adaptations are important in jointly
addressing issues such as timeliness and reliability require-
ments in long-running embedded systems. To this end, we
have presented a system called Morpheus that enables such
adaptations. For this article we have not carried out a complete
study of the reliability enhancements that may be achieved by
such an approach. We have also not established strategies to
select the best adaptation(s) for a given scenario. This requires
further work. We have only established that it is possible, with
limited overheads, to achieve cross-layer adaptations through
extensions to the programming language and the runtime
environment. We make use of user-space scheduling to this
end and this design choice may be valuable in other situations
as well (for example, enabling support for mixed-criticality
scheduling).

Acknowledgements. This work was supported in part by
NSERC Canada under the Discovery Grant program, Grant
CRDPJ 434659-12 and the ICICS/TELUS People & Planet
Friendly Home Initiative at UBC.

References

[1] Aydin, H., Melhem, R., and Mossé, D. Optimal scheduling of imprecise
computation tasks in the presence of multiple faults. In Proceedings
of the International Conference on Real-Time Computing Systems and
Applications (December 2000), pp. 289–296.

[2] Baek, W., and Chilimbi, T. M. Green: A framework for supporting
energy-conscious programming using controlled approximation. In Pro-
ceedings of the ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI) (June 2010), pp. 198–209.

[3] Dadashi, M., Rashid, L., Pattabiraman, K., and Gopalakrishnan, S.
Integrated hardware-software diagnosis for intermittent hardware faults.
In Proceedings of the Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (2014), pp. 363–374.

[4] Egan, A., Kutz, D., Miklun, D., Melhem, R., and Mossé, D. Fault-
tolerant RT-Mach (FT-RT-Mach) and an application to real-time train
control. Software: Practice and Experience 29, 4 (April 1999), 379–
395.

[5] Ghosh, S., Melhem, R., Mossé, D., and Sarma, J. S. Fault-tolerant rate-
monotonic scheduling. Real-Time Systems 15, 2 (1998), 149–181.

[6] Herder, J. N., Bos, H., Gras, B., Homburg, P., and Tanenbaum, A. S.
Minix 3: A highly reliable, self-repairing operating system. ACM
SIGOPS Operating Systems Review 40, 3 (July 2006), 80–89.

[7] Hoffmann, H., Misailovic, S., Sidiroglou, S., Agarwal, A., and Rinard,
M. Using code perforation to improve performance, reduce energy
consumption, and respond to failures. Tech. Rep. MIT-CSAIL-TR-2009-
042, MIT, September 2009.

[8] Hoffmann, H., Sidiroglou, S., Carbin, M., Misailovic, S., Agarwal, A.,
and Rinard, M. Dynamic knobs for responsive power-aware computing.
In Proceedings of the International Conference on Architectural Support
for Programming Languages and Operating Systems (March 2011),
pp. 199–212.

[9] Lattner, C. LLVM: An infrastructure for multi-stage optimization. Tech.
rep., University of Illinois at Urbana-Champaign, 2002.

[10] Liu, J. W.-S., Shih, W.-K., Lin, K.-J., Bettati, R., and Chung, J.-Y.
Imprecise computations. Proceedings of the IEEE 82, 1 (January 1994),
83–94.

[11] Mancina, A., Lipari, G., Herder, J. N., Gras, B., and Tanenbaum, A. S.
Enhancing a dependable multiserver operating system with temporal
protection via resource reservations. In Proceedings of the Conference
on Real-Time Networks and Systems (October 2008).

[12] Melhem, R., Mossé, D., and Elnozahy, E. The interplay of power
management and fault recovery in real-time systems. IEEE Transactions
on Computers 53, 3 (February 2004), 217–231.

[13] Pattabiraman, K., Grover, V., and Zorn, B. G. Samurai: Protecting critical
data in unsafe languages. In Proceedings of the ACM SIGOPS European
Conference on Computer Systems (Mar./Apr. 2008), pp. 219–232.

[14] Qin, F., Tucek, J., Sundaresan, J., and Zhou, Y. Rx: Treating bugs as
allergies – a safe method to survive software failures. ACM Transactions
on Computer Systems 27, 3 (August 2007), Article 7.

[15] Rashid, L., Pattabiraman, K., and Gopalakrishnan, S. Modeling the
propagation of intermittent hardware faults in programs. In Proceedings
of the IEEE Pacific Rim International Symposium on Dependable
Computing (December 2010), pp. 19–26.

[16] Rashid, L., Pattabiraman, K., and Gopalakrishnan, S. Intermittent
hardware errors: Modeling and Evaluation. In Proceedings of the
International Conference on Quantitative Evaluation of Systems (2012),
pp. 220–229.

[17] Reis, G. A., Chang, J., and August, D. I. Automatic instruction-level
software-only recovery methods. IEEE Micro 27, 1 (January 2007),
36–47.

[18] Rinard, M., Cadar, C., Dumitran, D., Roy, D. M., Leu, T., and Jr., W.
S. B. Enhancing server availability and security through failure-oblivious
computing. In Proceedings of USENIX Conference on Operating
Systems Design and Implementation (December 2004), pp. 303–316.

[19] SPEC. 252.eon. http://www.spec.org/cpu2000/CINT2000/, October
1999.

[20] Swift, B. P. User mode scheduling in Minix 3. Tech. rep., Vrije
University, October 2010.

[21] Tanenbaum, A. S. Minix 3. http://www.minix3.org/, 2010.
[22] Tanenbaum, A. S., and Woodhull, A. S. Operating Systems Design

and Implementation, 3 ed. Prentice Hall Software Series. Prentice Hall,
2006.

[23] Zandbergen, B. A more real-time Minix 3. http://www.rtminix3.org/,
October 2009.

[24] Zilberstein, S. Using anytime algorithms in intelligent systems. AI
Magazine 17, 3 (March 1996), 73–83.

[25] Zilberstein, S., and Russell, S. J. Aproximate reasoning using anytime
algorithms. In Imprecise and approximate computation, S. Natarajan,
Ed. Kluwer Academic Publishers, 1995.

	Introduction
	The Morpheus System
	Overview
	Programming Language Extensions
	Design
	Implementation

	Code Generation
	Design
	Implementation

	Runtime System
	Design
	Implementation

	Design Rationale
	Evaluation
	Evaluation Metrics
	Experimental Setup
	Benchmarks
	Evaluation Results

	Related Work
	Conclusions
	References

