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Proof of Equation (7) in the main manuscript

Consider moving a vertex v in community ci to a new community cj . Rewrite
the definition of Q as

Q =

k
∑

i=1

Qi,

where Qi = eii

M
− ( ai

M
)2 is the contribution made by community ci. It can be

seen easily that after moving vertex v from ci to cj , the only terms that will be
changed are Qi and Qj . Therefore, the difference between the new modualarity
Q′ and the original modularity can be computed by:

Q′ − Q = Q′
i + Q′

j − Qi − Qj .

After the move, the total degrees within community i and j can be given by:

e′ii = eii − 2dv
i , and

e′jj = ejj + 2dv
j ,

where dv
i is the number of connections that v has in community i. Similarly,

the total degrees for the vertices in community i and j can be given by:

a′
i = ai − dv, and

a′
j = aj + dv,

where dv is the degree of v.
Therefore,

Q′
i + Q′

j =
e′ii + e′jj

M
−

(a′
i)

2 + (a′
j)

2

M2

=
eii − 2dv

i + ejj + 2dv
j

M
−

(ai − dv)2 + (aj + dv)2

M2

=
eii + ejj

M
+

2dv
j − 2dv

i

M
−

a2

i + a2

j

M2
−

2(dv)2 − 2ajd
v − 2aid

v

M2

= Qi + Qj +
2

M
(dv

j − dv
i ) +

2dv

M2
(ai − aj − dv).
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Hence,

∆Qmigr(v, i, j) = Q′ − Q =
2

M
(dv

j − dv
i ) +

2dv

M2
(ai + aj − dv). (1)

Proof of a theorem

Theorem: during the execution of Qcut, the algorithm will never move a vertex
from a community where it has some connections to a community where it has
no connection at all.
Proof: We prove this by contradiction. Suppose that the network has already
been partitioned into K communities. Now assume Qcut chooses to move a
node v, which is currently in community i, to a new community j, where v has
no connection, i.e., dv

j = 0. According to Equation (1) above, the change to Q

after the move can be calculated as

∆Qmigr(v, i, j) =
−2dv

i

M
+

2dv(ai − aj − dv)

M2
, (2)

where dv
i is the number of connections that v has in communities i, dv is the

degree of vertex v, M is the total number of edges in the network, and ai is the
total degree for the vertices in community i.

Suppose that we had moved v to some other community, k 6= i, instead of j.
Since Qcut actually chose j, we must have

∆Qmigr(v, i, k) ≤ ∆Qmigr(v, i, j) for all possible k, (3)

and
∆Qmigr(v, i, j) > 0. (4)

Combining Equations (2) and (4), we have

2dv(ai − aj − dv)

M2
>

2dv
i

M
.

Therefore,
dv(ai − aj − dv) > Mdv

i . (5)

From Equations (2) and (3), we have

dv
k − dv

i

M
+

dv(ai − ak − dv)

M2
≤

−dv
i

M
+

dv(ai − aj − dv)

M2
.

Therefore,
dv(ak − aj) ≥ Mdv

k. (6)

Combining Equations (5) and (6) and summing over all k 6= i, we have

dv(ai − aj − dv) +
∑

k 6=i

dv(ak − aj) > Mdv
i +

∑

k 6=i

Mdv
k,

dv(ai − aj − dv) +
∑

k 6=i

dv(ak − aj) > Mdv.
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Hence,

ai − aj − dv +
∑

k 6=i

ak −
∑

k 6=i

aj > M,

(ai +
∑

k 6=i

ak) − (aj +
∑

k 6=i

aj + dv) > M,

M − (Kaj + dv) > M,

Kaj + dv < 0,

which is impossible, since by definition a network has no negative edges. There-
fore, inequalities (3) and (4) cannot be both true. Hence moving v to a commu-
nity j where dv

j = 0 will not be the best move. It will either reduce Q, or there

is a k such that ∆Qmigr(v, i, k) > ∆Qmigr(v, i, j).

Robustness of HQcut

The HQcut algorithm uses two parameters, minq and minz. To test the sensi-
tivity of the algorithm’s results with respect to the two parameters, we varied the
two parameters in a wide range of values, and computed the algorithm’s accu-
racy (Jaccard Index) on a large number of synthetic networks with known com-
munity structures. The more than 1000 networks used in this test are the same
as the networks used for plotting Fig 2(d) in the main manuscript. As shown
in Fig. S1, the accuracy of the algorithm is largely invariant for 10 ≥ minz ≥ 2
and is the best for 0.35 ≥ minq ≥ 0.3. Therefore, for all experiments, we use
minq = 0.3 and minz = 2 as the default parameters.
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Fig. S1: Accuracy of HQcut as a function of minq and minz.

Other types of accuracy measurement

Besides the Jaccard Index [10], we also measured the accuracy of the algorithms
using three other criterion, the Fowlkes-Mallows Index [3], Variation of Infor-
mation [6], and the Wallace Index [11].
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The Fowlkes-Mallows index is a variant of the Wallace Index. Let C1 and
C2 be the true and predicted community structures, respectively. Let S1 be the
set of vertex pairs in the same community under C1, and S2 the set of vertex
pairs in the same community under C2. The Wallace Index is defined as

W (C1, C2) =
|S1 ∩ S2|

|S1|
, (7)

which represents the probability that a pair of vertices which are in the same
community under C1 are also in the same community under C2. It can be
seen that the Wallace Index is asymmetric, i.e., W (C1, C2) 6= W (C2, C1). The
Fowlkes-Mallows Index is defined as the geometric mean of the two:

F (C1, C2) =
√

W (C1, C2)W (C2, C1). (8)

The second measurement, Variation of Information, is defined based on in-
formation theory, and is symmetric. It basically measures the amount of infor-
mation that is lost or gained in changing from C1 to C2. For details see [6].

The value of the Fowlkes-Mallows Index is between 0 and 1, and a high
value means better accuracy. The value of Variation of Information is always
non-negative, and a zero means the best accuracy.

As shown in Figures S2 and S3, the relative performance of the four algo-
rithms (Newman, SA, Qcut, and HQcut) based on the Fowlkes-Mallows Index
and Variation of Information is similar to that in the main manuscript measured
by the Jaccard Index.
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Fig. S2: Accuracy of the algorithms on synthetic networks with equal com-
munity sizes. Left: accuracy measured by the Fowlkes-Mallows Index. Right:
accuracy measured by Variation of Information.

Figure S4 shows the performance of the algorithms using the Wallace Index.
W (C1, C2) measures the percentage of vertex pairs in the same community in
C1 that are also in the same community in C2. On the other hand, W (C2, C1)
measures the percentage of vertex pairs in the same community in C2 that are
also in the same community in C1. These two quantities can be considered as
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Fig. S3: Accuracy of the algorithms on networks with heterogeneous commu-
nity sizes. Left: accuracy measured by Fowlkes-Mallows Index. Right: accuracy
measured by Variation of Information.

0 5 10 15 20 25
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Average inter−community edges per node

W
al

la
ce

 In
de

x 
T

ru
e 

vs
 P

re
di

ct
ed

Newman
Qcut
HQcut
SA

0 5 10 15 20 25
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Average inter−community edges per node

W
al

la
ce

 In
de

x 
P

re
di

ct
ed

 v
s 

T
ru

e

Newman
Qcut
HQcut
SA

Fig. S4: Wallace Index of the algorithms on the networks with heterogeneous
community sizes. Left and right are W (C1, C2) and W (C2, C1), respectively,
where C1 and C2 are true and predicted community structures, respectively.

the measurements of recall and precision measurements, if we treat each intra-
community vertex pair as an instance.

As shown in the main manuscript, Qcut and SA often achieve better modu-
larities than Newman. Figure S4(a) shows that the former two algorithms also
have much higher recall values, i.e., they recovered more intra-community ver-
tex pairs than Newman. This is achieved with the price of a lower precision due
to more total intra-community vertex pairs being predicted. Note that the low
recall of Newman is not because it has over-partitioned the networks: the num-
ber of communities predicted by Newman is still much smaller than that of the
true structures (Fig. 2(f) in the main manuscript). On the other hand, HQcut

has slightly lower recalls than Qcut and SA, but much higher precisions than
all other three algorithms, which means that it is able to successfully separate
the merged communities without over-partitioning the true communities.
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Information about the real-world networks

• Social: This is a social network of 67 prison inmates, based on their an-
swers to questionnaires. The network was first studied in [5]. Data were
downloaded from UCINET IV Datasets (http://vlado.fmf.uni-lj.si/
pub/networks/data/Ucinet/UciData.htm).

• Neuron: This network represents the neural network of C. Elegans. The
network was originally described in [13], and was studied by [12]. Data
were downloaded from http://www.weizmann.ac.il/mcb/UriAlon/.

• Ecoli Reg: Transcriptional regulatory network of E. coli. Nodes are
operons. An edge is set between A and B if A activates B or B ac-
tivates A. The network was studied in [8]. Data were obtained from
http://www.weizmann.ac.il/mcb/UriAlon/.

• Circuit: Electronic circuits. Nodes are electronic components (capacitors,
diodes, etc.) and connections are wires. This network was downloaded
from http://www.weizmann.ac.il/mcb/UriAlon/.

• Yeast Reg: Transcriptional regulatory network of yeast Saccharomyces

cerevisiae. Similar to E. coli transcriptional regulatory network. This net-
work was downloaded from http://www.weizmann.ac.il/mcb/UriAlon/.

• Ecoli Met: The largest connected component of the metabolic network of
E. coli. In this network, nodes represent metabolites and two nodes i and
j are connected by a link if there is a chemical reaction in which i is a
substrate and j a product, or vice versa. The data was obtained from the
KEGG database [4].

• Ecoli PPI: The largest connected component of a protein-protein inter-
action network of E. coli. Network data were obtained from the DIP
database [9].

• Internet: The autonomous Systems topology of the Internet [2]. Network
data were downloaded from http://www.cosin.org.

• Football: Network of United States NCAA division I-A college football
teams. Each vertex is a team. An edge between two teams represents a
regular-season game played by them in year 2006. The game schedule was
obtained from http://sports.espn.go.com/ncf/schedules.

Example associated communities

Figures 4–8 show some associated communities, and the corresponding protein
complexes in the MIPS database [7]. Nodes in different communities are drawn
with different colors. The shape of a node represents the protein complex or
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complexes of which it is a member. Annotations of genes and complexes are ob-
tained from SGD (http://www.yeastgenome.org/) [1]. As shown, the commu-
nities that are statistically associated are not only highly connected physically,
but functionally strongly related. They often correspond to different subunits of
a large protein complex, or represent protein complexes that share a significant
portion of their members and are involved in similar biological processes.

Fig. S5: A pair of associated communities. Diamond: components of the INO80
protein complex. Circle: components of the SWR1 protein complex. Rectangle:
shared components of INO80 and SWR1. Parallelogram: proteins that are not
components of the INO80 or SWR1 by current knowledge. IES2, IES4, IES5,
and IES6 are known to be associated with INO80 under low-salt conditions.
Both INO80 and SWR1 have functions in chromatin remodeling.
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Fig. S6: A pair of associated communities. Diamond: components of the SAGA
protein complex. Circle: components of the TFIID protein complex. Rectangle:
shared components of SAGA and TFIID. Parallelogram: proteins that are not
components of SAGA or TFIID by current knowledge. TFIID is involved in
promoter binding and RNA polymerase II transcription initiation. SAGA is a
transcription regulatory complex.

Fig. S7: A pair of associated communities. Diamond: components of the CPF
protein complex. Circle: components of the Set1C protein complex. Rectangle:
shared components of CPF and Set1C. Parallelogram: proteins that are not
components of CPF or Set1C by current knowledge. CPF is involved in mRNA
cleavage and polyadenylation. Set1C catalyzes methylation of histone H3, and
mediates chromatin remodeling.
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Fig. S8: A pair of associated communities. Diamond: components of the eIF2B
protein complex. Circle: components of the eIF3 protein complex. Parallel-
ogram: proteins that are not components of eIF2B or eIF3 by current knowl-
edge. The eIF2B and eIF3 are the two largest complexes involved in cytoplasmic
translation initiation. Several highly connected proteins in the network are also
translation initiation factors. For example, GCD11 and SIU2 are components
of eIF2 complexes; TIF5 encodes translation initiation factor eIF-5; HCR1 is a
substoichiometric component of eIF3.
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Fig. S9: A set of associated communities corresponding to mRNA spliceosome
complexes. Diamond: components of the snRNP U1 protein complex. Cir-
cle: components of snRNP U2. Triangle: components of snRNP U5. Hexagon:
components of snRNP U6. Rectangle: shared components of snRNP U1 and
U5. Rounded rectangle: Components of U4/U6 x U5 tri-snRNP complex. Par-
allelogram: proteins that are not components of the above protein complexes
by current knowledge. However, many of them are known to have functions in
mRNA processing.
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