
An Efficient Spectral Algorithm for Network Community Discovery
and Its Applications to Biological and Social Networks

Jianhua Ruan and Weixiong Zhang
Department of Computer Science and Engineering

Washington University in St Loius
One Brookings Dr, St Louis, MO 63130

{jruan,zhang}@cse.wustl.edu

Abstract

Automatic discovery of community structures in complex
networks is a fundamental task in many disciplines, includ-
ing social science, engineering, and biology. Recently, a
quantitative measure called modularity (Q) has been pro-
posed to effectively assess the quality of community struc-
tures. Several community discovery algorithms have since
been developed based on the optimization of Q. However,
this optimization problem is NP-hard, and the existing al-
gorithms have a low accuracy or are computationally ex-
pensive. In this paper, we present an efficient spectral algo-
rithm for modularity optimization. When tested on a large
number of synthetic or real-world networks, and compared
to the existing algorithms, our method is efficient and and
has a high accuracy. In addition, we have successfully ap-
plied our algorithm to detect interesting and meaningful
community structures from real-world networks in different
domains, including biology, medicine and social science.
Due to space limitation, results of these applications are
presented in a complete version of the paper available on
our website (http://cse.wustl.edu/˜jruan/).

1 Introduction

The study of complex networks has become a fast grow-
ing subject in many disciplines, including physics, biol-
ogy, and social science. At least part of the reason can be
attributed to the discovery that real-world networks from
totally different sources can share surprisingly high simi-
larities in their topological properties, such as the power-
law degree distributions and high clustering coefficients.
(See [1, 14] for reviews.)

One of the key properties in complex networks that have
attracted a great deal of interest recently is the so-called
community structures, i.e. relatively densely connected
sub-networks [15]. Community structures have been found

in social and biological networks, as well as technological
networks such as the Internet and power grid. Automati-
cally discovering such structures is fundamentally impor-
tant for understanding the relationships between network
structures and functions, and has many practical applica-
tions. For example, identifying communities from a collab-
oration network may reveal scientific activities as well as
evolution and development of research areas [12], while de-
tecting hidden communities on the World Wide Web may
help prevent crime and terrorism [2].

To design effective community discovery algorithms,
Newman and Girvan [16] proposed a quantitative measure,
called modularity (Q), to assess the quality of community
structures, and formulated community discovery as a opti-
mization problem. Since optimizing Q is a NP-hard prob-
lem, several heuristic methods have been developed, as sur-
veyed in [4]. The fastest algorithm available uses a greedy
strategy and suffers from poor quality [3]. A more accu-
rate method is based on simulated annealing, which requires
a prohibitively long running time on large networks [11].
Several spectral algorithms have been developed, which
have relatively good performance, but still inefficient for
large networks [21, 15].

In this paper, we propose a spectral algorithm that is ef-
fective in finding high quality communities as well as effi-
cient on large networks. The algorithm adopts a recursive
strategy to partition networks while optimizing Q. Unlike
the existing algorithms, our method is a hybrid of direct
k-way partitioning and recursive 2-way partitioning strate-
gies [21, 15]. We evaluate our algorithm on a large number
of synthetic and real-world networks. The results show that
the algorithm is more efficient and more accurate than a re-
cursive 2-way partitioning method. Compared to a direct
k-way partitioning method, our algorithm is much more ef-
ficient, while having a comparable accuracy.

The paper is organized as follows. In Section 2, we intro-
duce some basic concepts, notations, and previous works.

In Section 3, we describe our algorithm and its complexity,
and discuss several related methods. We present experimen-
tal results in Section 4, and conclude in Section 5.

2 Preliminaries

2.1 Spectral graph partitioning

Let G = (V, E) be a network of n vertices in V and m
edges in E. Let A = (Aij) be the adjacency matrix of G.
A graph partitioning problem is to find two or more vertex
subsets of nearly equal sizes, while minimizing the num-
ber of edges cut by the partitioning [8]. Known to be NP-
hard, the problem exists in many real applications, such as
circuit design and load balancing in distributed computing.
Many heuristic methods have been developed for the prob-
lem, among which spectral methods have received much at-
tention and are the most popular.

Spectral graph partitioning is in fact a family of methods.
These methods depend on the eigenvectors of the Laplacian
matrix or its relatives of a graph. Depending on the way
they partition a graph, spectral methods can be classified
into two classes. The first class uses the leading eigenvec-
tor of a graph Laplacian to bi-partition the graph. The sec-
ond class of approaches computes a k-way partitioning of a
graph using multiple eigenvectors. We briefly review some
representatives of these two classes of algorithms below.

Let D be the diagonal degree matrix of A, i.e. Dii =∑
j Aij . L = D−A is called the Laplacian matrix of G. Let

λ1 ≤ λ2 ≤ · · · ≤ λn be the eigenvalues and µ1, µ2, · · · , µn

be the corresponding eigenvectors for the generalized eigen-
value problem Lµ = λDµ. It can be shown that λ1 = 0,
and µ1 = 1, a vector with all ones.

Given the above notation, a representative of bi-
partitioning, the SM algorithm [19], works as follows. (1)
Compute µ2, the second smallest generalized eigenvector
of L. (2) Conduct a linear search on µ2 to find a partition of
the graph to minimize a normalized cut criterion [19]. It has
been shown that when certain constraints are satisfied, the
SM algorithm can reach the optima of normalized cuts [19].
To find more than two clusters, the SM algorithm can be
applied recursively.

The most popular algorithm in the second class, the NJW
algorithm [17], finds a k-way partition of a network directly
as follows, where k is given by the user. (1) Compute the
k smallest generalized eigenvectors of L and stack them in
columns to form a matrix Y = [µ1, µ2, · · · , µk]. (2) Nor-
malize each row of Y to have unit length. (3) Treat each
row as a point in Rk, and apply standard k-means algorithm
(or any other geometric clustering algorithm) to group them
into k clusters.

2.2 Modularity and community structures

Given a partition of a network, Γk, which divides its
vertices into k communities, the modularity is defined as
Q(Γk) =

∑k

i=1
(eii/c − (ai/c)2), where eii is the number

of edges with both vertices within community i, ai is the
number of edges with one or both vertices in community i,
and c is the total number of edges [16]. Therefore, the Q
function measures the fraction of edges falling within com-
munities, subtracted by what one would expect if the edges
were randomly placed. A larger Q value means stronger
community structures. If a partition gives no more within-
community edges than would be expected by chance, the
modularity Q ≤ 0. For a trivial partitioning with a single
community, Q = 0. It has been observed that most real-
world networks have Q > 0.3 [16].

The Q function provides a good quality measure to com-
pare different community structures. Several algorithms
have been developed to search for community structures
by looking for the division of a network that optimizes
Q (see [4] for a survey). White and Smyth proposed a
spectral algorithm (WS), which is effective on small net-
works [21]. They show that, when the number of commu-
nities k is given, the optimization of Q is equivalent to an
eigen decomposition problem, if relaxing the discrete mem-
bership constraint [21]. Therefore, they directly applied a
k-way spectral graph partitioning algorithm for this pur-
pose. To automatically determine the number of communi-
ties, the spectral algorithm is executed multiple times, with
k ranging from the user defined minimum Kmin to maxi-
mum Kmax number of communities. The k that gives the
highest Q value is deemed the most appropriate number of
communities. A slightly modified version of the WS algo-
rithm is as follows. (1) For each k, Kmin ≤ k ≤ Kmax,
apply NJW to find a k-way partition, denoted as Γk. (2)
k∗ = argmaxk Q(Γk) is the number of communities, and
Γ∗ = Γk∗ is the best community structure.

While the WS algorithm is effective in finding good
community structures, it scales poorly to large networks,
because it needs to execute k-means up to Kmax times.
Without any prior knowledge of a network, one may over-
estimate Kmax in order to reach the optimal Q. For sparse
networks, Kmax can be linear in the number of vertices in
the worst case, making it impractical to iterate over all pos-
sible k’s for large networks.

3 The Kcut algorithm

In order to develop a method that scales well to large
networks while retaining effectiveness in finding good com-
munities, we may take the strategy used in the SM algo-
rithm, i.e., to recursively divide a network into smaller ones.
However, two issues remain. First, when should the algo-
rithm halt, or in other words, how do we decide whether

a (sub)network should be partitioned? Since our goal is to
find a partition with a high modularity, we can test whether
the Q value increases after the partition. If no partition can
improve the modularity, the (sub)network should not be di-
vided. Second, it has been empirically observed that if there
are multiple communities, using multiple eigenvectors to di-
rectly compute a k-way partition is better than recursive bi-
partitioning methods [17]. Here, we propose an algorithm
that is a unique combination of recursive partitioning and
direct k-way methods, which will achieve the efficiency of
a recursive approach, while also having the same accuracy
as a direct k-way method.

We follow a greedy strategy to recursively partition a net-
work to optimize Q. Unlike the existing algorithms that al-
ways seek a bi-partition, we adopt a direct k-way partition
strategy as in the WS algorithm. Briefly, we compute the
best k-way partition with k = 2, 3, · · · , l using the NJW
algorithm, and select the k that gives the highest Q value.
Then for each subnetwork the algorithm is recursively ap-
plied. To reduce the computation cost, we restrict l to small
integers. As we will shown in experiments, the algorithm
with l as small as 3 or 4 can significantly improve mod-
ularity over the standard bi-partitioning strategy. Further-
more, the computation cost is also reduced with a slightly
increased value of l compared to bi-partitioning.

Given a network G and a small integer l that is the max-
imal number of partitions to be considered for each subnet-
work, our algorithm Kcut executes the following steps.

1. Initialize Γ to be a single cluster with all vertices, and
set Q = 0.

2. For each cluster P in Γ,
(a) Let g be the subnetwork of G containing the ver-

tices in P .
(b) For each integer k from 2 to l,

i. Apply NJW to find a k-way partitioning of
g, denoted by Γg

k,
ii. Compute new Q value of the network as

Q′

k = Q(Γ
⋃

Γg
k \ P).

(c) Find the k that gives the best Q value, i.e., k∗ =
arg maxk Q′

k.
(d) If Q′

k∗ > Q, accept the partition by replacing P
with Γg

k∗ , i.e., Γ = Γ
⋃

Γg
k∗ \ P , and set Q =

Q′

k∗ .
(e) Advance to the next cluster in Γ, if there is any.

The inner loop, step 2(b), is similar to the first step of the
WS algorithm, except that in 2(b)(ii) we compute the mod-
ularity of the whole network G, which is different from the
modularity Q(Γg

k). On the other hand, we do not need to
iterate over all communities in the network to re-compute
Q. From the definition of Q in Section 2.2, the contribution

of each community towards Q is independent of the other
communities. Therefore, after g is partitioned, Q can be ef-
ficiently updated with the communities that have just been
created in g. At step 2(c), we decide the best way to parti-
tion g that can improve Q the most. This step turns out to be
crucial in identifying globally good community structures
with high Q values. At step 2(d), we test if partitioning g
can contribute positively towards Q, and the partition is ac-
cepted only if Q increases. When the algorithm terminates,
no communities can be further created to improve Q, thus
Γ contains the best community structure.

3.1 Computational complexity

We first review the computational complexity of the WS
algorithm, since the inner loop of Kcut is simply the WS
algorithm, except that the computation of Q is slightly dif-
ferent. The WS algorithm contains two major components:
computing eigenvectors and executing k-means to partition
the network. Note that although WS calls NJW multiple
times, the eigen problem needs to be solved only once to
obtain all Kmax eigenvectors. To compute eigenvectors,
we used the eigs function in MATLAB, which has a time
complexity in O(mKh + nK2h + K3h), where m and n
are respectively the numbers of edges and vertices of the
graph, K = Kmax is the number of eigenvectors to be
computed, and h is the number of iterations for eigs to con-
verge [21]. Since K < n, the running time of eigs can be
simplified to O(mKh+nK2h). Second, we adopted a fast
k-means algorithm [6] in our implementation, which takes
approximately O(nKe) time, where e is the number of iter-
ations for k-means to converge. Since k-means is called K
times, the total running time is O(mKh+nK2h+nK2e),
where the first two terms are for eigs and the last term is
for k-means. Assuming e and h constants, the overall time
complexity of WS is O(mK + nK2), which can be close
to O(n3), since the maximal number of communities for a
sparse network may be linear in n.

The running time of Kcut depends on the depth of the re-
cursive calls. In the worst case, the partitions can be highly
imbalanced, and the depth of the recursion is merely the
number of partitions produced, K. A more practical es-
timate, however, is the average depth, which is close to
logl K, where l is the maximal number of partitions con-
sidered by NJW. Therefore, the running time taken by eigs
can be estimated to be O((mlh + nl2h) logl K), which can
be further simplified to O(mlh logl K), since l is small and
therefore in general m > nl. Similarly, the average-case
running time taken by k-means is O(nl2e logl K), and the
total complexity is given by O((mlh + nl2e) logl K).

Our experimental results show that for large networks
and small values of l, the time taken by eigs dominates,
giving an overall time complexity in O(mlh logl K) =
O(mh ln K l

ln l
) for Kcut. Therefore, assuming h is a con-

stant, also given that l is small and K = O(n), the total
complexity is O(m log n), which is much smaller than the
O(n3) running time of the WS algorithm. An important ob-
servation from the analysis is that the total running time of
Kcut is not a monotonically increasing function of l. Ana-
lytically, the minimum value of l/ ln l is achieved at l = 3.
Empirically, we observed that Kcut is most efficient with
l = 3 to 5 (see Section 4.2).

The memory complexity of both algorithms is O(m),
linear to the number of edges.

3.2 Related methods

Besides our algorithm and the WS method, several
other algorithms have also been developed for identify-
ing communities by modularity optimization. Newman
proposed an algorithm that is based on recursive spectral
bi-partitioning [15]. The algorithm computes the leading
eigenvector of a so-called modularity matrix, and divides
the vertices into two groups according to the signs of the
elements in the eigenvector. The algorithm runs recursively
on each subnetwork, until no improvement to Q is possi-
ble. Compared to our method, this algorithm is faster for
small networks, since no k-means is performed. On the
other hand, the modularity matrix is very dense, with al-
most no zero entries. Therefore, the algorithm takes O(n2)
memory even for sparse networks, in contrast to O(m) for
our method. Furthermore, the algorithm takes O(n2 log n)
running time, therefore, it does not scale well to large net-
works. Importantly, we will show that by combining k-way
partitioning with a recursive method, Kcut usually achieves
higher modularity than the Newman method.

There are also several methods that are not spectral-
based. The edge betweenness algorithm [9] and the ex-
tremal optimization algorithm [5] are known to be very
slow, with O(n3) and O(n2 log2 n) running time, respec-
tively. Another greedy approach, the CNM algorithm [3],
has approximately the same time complexity (O(m log2 n))
as our method, but the communities returned often have
poor quality [15].

4 Evaluation

We now evaluate our algorithm on a variety of networks
and compare it with three existing algorithms that were
mentioned in Section 3.2: the WS algorithm, the CNM algo-
rithm, and the Newman’s algorithm (NM). In what follows,
the results of our algorithm are denoted by K-2, K-3, · · ·, for
l = 2, 3, · · ·. Note that Newman suggested in [15] a refining
step to improve Q after the initial partitioning. To make a
fair comparison, this refining step was omitted in our study,
since in theory the same strategy can be applied to any other
algorithm as well.

0 0.01 0.02 0.03 0.04 0.05
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a)

p_out

Ja
cc

ar
d

In
de

x

WS
K−2
K−3
K−4
K−5
NM
CNM

0 0.01 0.02 0.03 0.04 0.05
−0.16

−0.14

−0.12

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02
(b)

p_out

Re
la

tiv
e

Q

WS
K−2
K−3
K−4
K−5
NM
CNM

Figure 1. Results on computer-generated
networks. Qrelative = Qdiscovered − Qtrue.

4.1 Computer-generated networks

To evaluate Kcut, we first tested it on computer-
generated networks with artificially embedded community
structures. Each network had 256 vertices forming 8 com-
munities of equal sizes. Edges were randomly placed with
probability pin between vertices within the same commu-
nity and with probability pout between vertices in different
communities. We varied pin from 0.8 to 0.3, representing
networks with dense to sparse communities. For each pin,
we varied pout from 0 to pin

10
with an increment of pin

50
. For

each pair of (pin, pout), we generated 100 networks and
clustered them with WS (Kmin = 2, Kmax = 15), Kcut
(l = 2, 3, 4 and 5), and NM algorithms. To measure the ac-
curacy of the results, we computed the Jaccard Index [20],
which is roughly the percentage of within-community edges
that were predicted correctly. The Jaccard Index between
the true community structure (Γ) and predicted community
structure (Γ′) is defined as

J(Γ, Γ′) =
|S(Γ) ∩ S(Γ′)|

|S(Γ) ∪ S(Γ′)|
, (1)

where S(Γ) and S(Γ′) are the sets of within-community
vertex pairs in Γ and Γ′, respectively.

Table 1. Q values for real-world networks.
Q

Network n m K∗ Kmax WS K-2 K-3 K-4 K-5 NM CNM Best
Karate 34 78 4 8 0.420 0.390 0.420 0.420 0.420 0.393 0.383 0.420 [21]
Football 115 613 10 20 0.602 0.524 0.600 0.596 0.590 0.493 0.577
Jazz 198 5484 4 8 0.439 0.444 0.444 0.439 0.439 0.394 0.439 0.445 [5]
PPI 1440 6223 133 200 0.362 0.332 0.344 0.348 0.364 0.341 0.337
Internet 3015 5156 52 100 0.604 0.594 0.600 0.601 0.601 0.524 0.620
Physicists 27519 60793 - 600 - 0.734 0.738 0.739 0.743 - 0.659 0.723 [15]
Kmax: maximal number of communities for WS. K∗: number of communities returned by WS. The last column are the
best Q values achieved by existing methods in the literature, and references to the methods.

Table 2. Total CPU time (seconds).
Network WS K-2 K-3 K-4 K-5 NM CNM*
Karate 0.3 0.3 0.3 0.3 0.4 0.1 0.02
Football 1.1 0.7 0.6 0.7 1.1 0.3 0.04
Jazz 0.5 0.6 0.7 0.7 0.9 0.3 0.06
PPI 8k 40 26 31 23 58 0.8
Internet 3k 37 27 22 23 172 63
Physicists - 6k 3k 2k 2k - 283

*A significant difference between CNM and the other algorithms
here is that CNM was implemented in C, while all the other algo-
rithms compared here were implemented in MATLAB m-files.

Fig. 1(a) shows the Jaccard Index as a function of pout

for pin = 0.5. Results for other values of pin or using
other types of accuracy measurement are similar (data not
shown). The WS algorithm, which explicitly searches over
all k’s, has the best accuracy. On the other hand, Kcut with
large l values can better approximate WS than with small
l values. Moreover, as shown in Fig. 1(b), the Q values
achieved by the algorithms match their accuracies: WS has
the highest modularity, followed by K-5, K-4, ..., and the
Newman algorithm at last. A third measure, the number
of times an algorithm predicted k correctly, also shows that
WS > K-5 > · · · > K-2 > NM (data not shown). The CNM
algorithm has an accuracy similar to K-2 for smaller pout,
but its accuracy drops significantly when pout increases.

4.2 Real-world networks

We further tested our method on several real-world net-
works. These include an acquaintance network in a Karate
club [22], the opponent network of American NCAA Di-
vision I college football teams in the year 2000 [9], a co-
performing network of Jazz Bands [10], a protein-protein
interaction network of E. coli [18], the Autonomous Sys-
tems topology of the Internet [7], and a collaboration net-
work of physicists [13]. As shown in Table 1, the WS algo-
rithm usually returns community structures with the highest
Q value. Although Kcut with l = 2 often performed poorly,
Kcut with l ≥ 3 can usually achieve Q values as good as
that by WS, whereas with a much reduced running time.
Moreover, for the three networks (Karate, Jazz, Physicists)
that have been analyzed by others, Kcut can find modularity

values that are comparable to or better than the best known
ones. The NM algorithm (without the refining step) and the
CNM algorithm usually have much worse accuracy com-
paring to WS and Kcut. The WS and Newman algorithms
failed to finish on the physicist network, due to their exces-
sive running time or memory usage.

In addition, the communities returned by Kcut are often
very close to the known communities if they are available.
For example, for the Karate club network, Kcut precisely
predicted the actual separation of the club caused by a dis-
pute among its members [9]. For the football network, Kcut
correctly revealed the official NCAA conference structure
of the football teams [9], except for a few teams that do not
belong to any conference. Because of space limit, we omit
the detailed results here.

4.3 Running time

Table 2 shows the running time of the four algorithms on
the six real-world networks. Table 3 shows the time spent
on eigs and k-means by WS, Kcut and NM. CNM is based
on a different rationale and does not have these two com-
ponents. As shown in Table 2, although WS is efficient for
small networks of up to a few hundred of vertices, it is very
inefficient on large networks. The Kcut algorithm, on the
other hand, can handle networks of several thousand of ver-
tices in less than half minute. It appears in Table 2 that CNM
is the most efficient, especially for small networks. At least
part of the reason is that CNM was implemented in the C
language, while the other three algorithms were all imple-
mented in MATLAB M-files. M-files are interpreted at run
time, and therefore have higher overhead.

Also observe that Kcut is often faster with l = 3, 4, 5
than with l = 2. Based on the analysis in Section 3.1, the
time Kcut spent in eigs is approximately linear to l/ ln l,
which reaches its minimum at l = 3. In contrast, the time
Kcut spent on k-means is proportional to l2/ ln l, which is
monotonically increasing for l ≥ 2. The experimental re-
sults in Table 3 partially support the theoretical analysis.
For large networks, the total running time of Kcut is dom-
inated by eigs. Therefore, Kcut can take advantage of a
slightly increased l to reduce its running time. When l be-

Table 3. CPU time (seconds) for program components.
Network WS K-2 K-3 K-4 K-5 NM
Karate 0.08 0.16 0.16 0.11 0.1 0.11 0.1 0.2 0.08 0.22 0.11
Football 0.1 0.81 0.33 0.22 0.21 0.23 0.29 0.36 0.23 0.7 0.28
Jazz 0.11 0.29 0.26 0.06 0.31 0.23 0.25 0.3 0.25 0.5 0.25
PPI 14 7857 34 3 20 4 18 7 11 8 53
Internet 12 2892 31 3 19 5 14 6 11 9 150
Physicists - - 5353 79 2451 109 1473 152 1473 170 -

For WS and Kcut, the first and second columns are the time taken by eigs and k-means, respectively.
The last column is the time spent on eigs in the Newman algorithm.

comes too large, however, the running time of both compo-
nents increases, and the efficiency of Kcut may degrade.

5 Conclusions

We have developed a fast algorithm, Kcut, for identify-
ing community structures in large networks. Our approach
is based on a greedy optimization of a modularity func-
tion Q. Unlike previous methods, Kcut is not restricted to
bi-partitions, but considers all k-way partitions for a small
range of k. We have found that this relaxation not only im-
proves the quality of the identified communities, but also
increases the efficiency of the algorithm. We have demon-
strated the performance of our method on a variety of ran-
dom and real-world networks. Compared to the existing
approaches, Kcut can find better Q values than other greedy
approaches, and has an accuracy comparable to that of a
much slower exhaustive search method.

In addition, we have applied our method to several real
problems in several different fields: biology, medicine and
social science. In all cases, our algorithm is able to detect
significant and meaningful community structures that pro-
vide important information about the systems of interest. A
longer version of this paper including details of these results
is available on our website (http://www.cse.wustl.
edu/˜jruan).

Acknowledgments
This research was supported in part by NSF grants ITR/EIA-

0113618 and IIS-0535257 and a grant from Monsanto Company
to W.Z.

References

[1] R. Albert and A. Barabasi. Statistical mechanics of complex
networks. Reviews of Modern Physics, 74:47, 2002.

[2] J. Baumes, M. Goldberg, M. Magdon-Ismail, and W. Wal-
lace. Discovering hidden groups in communication net-
works. 2nd NSF/NIJ Symposium on Intelligence and Se-
curity Informatics., 2004.

[3] A. Clauset and et. al. Finding community structure in very
large networks. Physical Review E, 70:066111, 2004.

[4] L. Danon, J. Duch, A. Diaz-Guilera, and A. Arenas. Com-
paring community structure identification. J. Stat. Mech.,
page P09008, 2005.

[5] J. Duch and A. Arenas. Community detection in complex
networks using extremal optimization. Physical Review E,
72:027104, 2005.

[6] C. Elkan. Using the triangle inequality to accelerate k-
means. In ICML, pages 147–153, 2003.

[7] M. Faloutsos and et. al. On power-law relationships of the
internet topology. In SIGCOMM, pages 251–262, 1999.

[8] P. Fjallstrom. Algorithms for graph partitioning: A survey.
Linkoping Electron. Atricles in Comput. and Inform. Sci.,
1998.

[9] M. Girvan and M. Newman. Community structure in so-
cial and biological networks. Proc Natl Acad Sci U S A,
99:7821–6, 2002.

[10] P. Gleiser and L. Danon. Community structure in jazz. Ad-
vances in Complex Systems, 6:565, 2003.

[11] R. Guimera and L. N. Amaral. Functional cartography of
complex metabolic networks. Nature, 433:895–900, 2005.

[12] J. Hopcroft, O. Khan, B. Kulis, and B. Selman. Tracking
evolving communities in large linked networks. Proc Natl
Acad Sci U S A, 101 Suppl 1:5249–53, 2004.

[13] M. Newman. The structure of scientific collaboration net-
works. Proc Natl Acad Sci USA, 98:404–409, 2001.

[14] M. Newman. The structure and function of complex net-
works. SIAM Review, 45:167–256, 2003.

[15] M. Newman. Modularity and community structure in net-
works. Proc Natl Acad Sci USA, 103:8577–82, 2006.

[16] M. Newman and M. Girvan. Finding and evaluating com-
munity structure in networks. Phys Rev E, 69:026113, 2004.

[17] A. Y. Ng, M. I. Jordan, and Y. Weiss. On spectral clustering:
Analysis and an algorithm. In NIPS, pages 849–856, 2001.

[18] L. Salwinski, C. Miller, A. Smith, F. Pettit, J. Bowie, and
D. Eisenberg. The database of interacting proteins: 2004
update. Nucleic Acids Res, 32:D449–51, 2004.

[19] J. Shi and J. Malik. Normalized cuts and image segmenta-
tion. IEEE Trans. Pattern Anal. Mach. Intell., 22:888–905,
2000.

[20] P. Tan, M. Steinbach, and V. Kumar. Introduction to Data
Mining. Addison Wesley, 2005.

[21] S. White and P. Smyth. A spectral clustering approach to
finding communities in graph. In SIAM Data Mining, 2005.

[22] W. Zachary. An information flow model of conflict and fis-
sion in small groups. J. Anthropol. Res., 33:452–473, 1993.

