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Abstract

Identifying intrinsic structures in large networks is a
fundamental problem in many fields, such as engineer-
ing, social science and biology. In this paper, we are
concerned with communities, which are densely con-
nected sub-graphs in a network, and address two criti-
cal issues for finding community structures from large
experimental data. First, most existing network cluster-
ing methods assume sparse networks and networks with
strong community structures. In contrast, we consider
sparse and dense networks with weak community struc-
tures. We introduce a set of simple operations that cap-
ture local neighborhood information of a node to iden-
tify weak communities. Second, we consider the issue
of automatically determining the most appropriate num-
ber of communities, a crucial problem for all clustering
methods. This requires to properly evaluate the qual-
ity of community structures. Built atop a function for
network cluster evaluation by Newman and Girvan, we
extend their work to weighted graphs. We have eval-
uated our methods on many networks of known struc-
tures, and applied them to analyze a collaboration net-
work and a genetic network. The results showed that
our methods can find superb community structures and
correct numbers of communities. Comparing to the ex-
isting approaches, our methods performed significantly
better on networks with weak community structures and
equally well on networks with strong community struc-
tures.

Introduction and Overview

Complex networks have drawn much interest lately in many
different domains, ranging from engineering, social soéen

to biological studies (Newman 2003). In a framework of
network analysis, a system is modeled as a graph, in which
the nodes are the elements of the system (e.g. the individ-
uals in a society), and the edges represent the interactions
links, or similarities between pairs of elements. One of the
key problems that attracted a great deal of interest recentl
the identification of the so-called community structuregla r
atively densely connected sub-graph. Identification ohsuc
structures is fundamentally important for understandirey t
dynamics and design principles of complex systems.
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Identifying community structures in a network amounts
to clustering nodes into groups. Clustering algorithmsehav
been proposed in diverse areas, including data mining, VLSI
design, social networks, and bioinformatics, as surveyed
in (Jain, Murty, & Flynn 1999). Many of these algorithms
are not designed specifically for clustering networks, and
make strong assumptions of the statistical or topological
properties of the clusters (e.g., Gaussian distributiod an
spherical shapes). When experimental data do not agree
well with these assumptions, these methods often fail. In
addition, determining the right number of clusters is diffi-
cult in general and requires deep insight to the network of
interest. A few ideas have been proposed for this problem
with limited success (Chan, Schlag, & Zien 1993).

Recently, Newman & Girvan (2004) proposed a network
clustering algorithm that considers network topologies ex
plicitly. Their method is based on the concept of edge be-
tweenness centrality, which measures how likely that an
edge connects two nodes in two communities rather than
within the same community. The algorithm is a divisive hi-
erarchy clustering, which iteratively removes the edgéawit
the highest betweenness and then adjusts the betweenness
scores of the remaining edges. Furthermore, they proposed
a modularity functiong), to quantify the strength of commu-
nity structures (Newman & Girvan 2004). They empirically
showed that high) values are often correlated with high-
quality clusters for both computer-generated and realévor
networks. Therefore, their method can potentially be used
to automatically determine the number of clusters.

Even though the Newman & Girvan method has been suc-
cessful on a variety of networks, it requires a substantial
amount of computation, due to the recalculation of between-
ness scores after each edge removal. The algorithm runs
in O(m?n) time on arbitrary networks an@(n?3) time on
sparse networks witlh edges and nodes. Newman (2004)
proposed a faster algorithm based on a greedy optimization
of the modularity functior® that runs inO((m +n)n) time
for arbitrary networks and)(n?) time on sparse graphs.
White & Smyth (2005) related a relaxed optimization(pf
function with spectral clustering, and proposed an algorit
that works almost as well as the Newman & Girvan method
but with a smaller running time @ (hn) for sparse graphs,
with i being the number of iterations.

We make two contributions in this paper. First, most exist-



ing network clustering methods assume sparse networks andwise multiplication. It is evident that?ij = > AinAj

networks with strong community structures, i.e., there are
more intra-community edges than inter-community edges.

In contrast, we consider both sparse and dense networks

that have weak community structures, which are often re-
sulted from noise and errors in experiments (e.g. in genetic
interaction network). We introduce a set of simple opera-
tions to capture local neighborhood information of a node.
Combined with spectral clustering, our method can identify
weak community structures with significantly improved ac-
curacies. Furthermore, our method is very efficient, having
the same running time as the White & Smyth method.
Second, we address the issue of automatically deter-
mining the most appropriate number of communities in
weighted dense graphs. Under a good community structure
in weighted networks, intra-community edges tend to have
higher weights (or shorter distances) than inter-comrgunit
ones. Applying the modularity functio® to such commu-
nity structures, however, often results in very |@walues.
Although it is still possible to select the number of cluster
using the@) measure, it does not shed light on the quality
of community structures. We propose a simple extension
to estimate the&) function on weighted graphs by a rank-

based transformation of edge weights that can produce much

meaningful results.

The paper is organized as follows. We first investigate
local neighborhoods in real-world networks and propose
two local operations, and discuss a modularity function for
choosing the number of clusters. We then present the over-
all algorithm and extensively evaluate our methods on vari-
ous networks of known structures, and apply them to a real-
world collaboration network and a genetic network. We con-
clude with some final remarks.

Local Structures

Real-world networks often possess intrinsic propertiesg th
are lacked in random graphs, such as power-law distri-
butions of node degrees (Newman 2003). In particu-
lar, real-world networks often have surprisingly higher
clustering coefficients than random graphs (Newman
2003). bThef clustelring Cﬁefﬁcierﬁ is defined asc
3x(number of triangles in the gra p

((number of congected tnpl%s)p' Mhere a “connected
triple” means a path of three nodes. This coefficient is re-
lated to node transitivity, i.e., two nodes connecting toiat
node are likely to be directly connected. In terms of social
networks, this means that a friend of your friend is likely
to be your friend as well. In fact; is the probability that
your friend’s friend is also your friend. For most real-wbrl
networks,0.1 < ¢ < 0.5, while for random networks of
nodeslim,, ., ¢ = 0 (Newman 2003).

Let G = (V, E) be a network or graph , whefié is the
set ofn nodes andv the set ofm edges. Letd = (A;;) be
the adjacency matrix af, i.e., A;; = 1if (v;,v;) € E,0r0
otherwise. LetD be the diagonal degree matrix 4f where
Dj; =Y, Aij. We then define amatri® = Ax A-(1-1),

andC = A x A- A, wherel is an identity matrix, %" rep-
resents ordinary matrix multiplication and ‘means entry-

if i # j, or 0 otherwise, and’;; = A;; B;;. Therefore,
Bij is the number of common neighbors shared by nodes
v; andwv;, which is also the number of paths of length two

between them. So the sum of all entriesih ||B|| =

2 x (number of connected triplets). Similarl@-j is the
number of common neighbors of nodgsanduv; if they are

directly connected, and 0 otherwise. In other woids, is
the number of triangles that contain edgg v;). Therefore,

I|C|| = 6 x (number of triangles in the network), and the

clustering coefficient can be calculatedcas ||C||/||B]].

The above transitivity property indicates that two nodes
with many common neighbors tend to be in the same com-
munity. Therefore, the number of triangles passing along an
edge, normalized by the probability that this may happen by
chance, can be used to weight the edge. On the other hand, if
two nodes are both connected to many common neighbors,
regardless whether there is a direct edge between them, they
have a higher chance to be in the same community than ran-
dom. Therefore, we define two normalized matrices:

B
C

D-
D-

X B X D_%/Sb;
x C x D73 /8.,

)
)

wheresS;, andS, are scaling factors such that the value®in
andC' are within [O, 1] Note thaB” = Bij/Sb\ / D”'Djj
andC;; = Ci;j/Se\/DiiD;;. The square root in the de-
nominators gives relatively higher weights to node paias th
share more common neighbors.

Both B andC can be considered as adjacency matrices of
some weighted graphs transformed from the original graph
A. Cis a weighted subgraph of, where the edges be-
longing to more triangles gain higher weights. Thus, com-
paring to A, intra-community edges i@’ have increased
weights while inter-community edges have reduced weights.
The edges not in any triangle are simply removed. This
may cause some problem if the intra-community edges are
sparse, since in this case a community may be broken into
several disconnected components. As aremedy we can com-
bine A andC, which brings the edges i back to the graph.
The relationship betweeA and B is more complex, in that
B contains all the edges i@/, as well as some additional
edges that may or may not be ih In general,B is much
denser thaml or C. If the original graph is sparse, the added
edges due to similar local neighborhood structures may pro-
vide additional information of communities. Therefore, we
consider a combination of the three:

H=(axA)+(8xB)+C, 3)

wherea and 3 are scalars. Ideally, small and 3 are pre-
ferred for dense graphs or graphs with high clustering coef-
ficients, and largec and 3 should be used for sparse graphs.
As to be seen in the experiment section, we find that sim-
ply takinga = § = 1 is sufficient for most cases that we
studied.

Although the above discussion is for unweighted net-
works, Equations (1) - (3) can be directly applied to
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weighted graphs, whetg;; is a positive weight for an edge
between nodes; andv;. In the special case where a net-
work is a weighted complete graph, we choase- 3 = 0
sinceC would not remove any edge from, and empiri-
cally it turns out to be better than any other combination in
our study (see Experimental Results).

Modularity and Number of Clusters

Given a clusterin@’;, of a graph that partitions its nodes into
k groups, the modularity) of T'y, is defined as

k
Qx) =Y (ew—aj),
=1
wheree;; is the fraction of the edges that fall within clus-
ter 4, anda; the fraction of edges each of which has at least
one end connected to a node in clust@dewman & Girvan
2004). TheQ function is conceptually intuitive: It measures
the edge density within a cluster, subtracted by the density
that one would expect by chance, and sums all such dif-
ferences over all clusters. If a particular partitioninges
no more intra-community edges than would be expected by
chance, the modularit§) = 0. For a trivial clustering with
a single community) is always equal to zero.

A nice feature of modularity) is that it provides a global
quality measurement of community structures for a net-
work. It has been found that most real-world networks have
@ > 0.3, which was suggested as a threshold for good com-
munity structures (Newman & Girvan 2004). We have also
found that networks witld) > 0.3 are relatively easy to clus-
ter in that most existing algorithms will return good cluste
ing results; while the clustering quality of most clusterin
algorithms decreases dramatically when ¢healue is be-
low 0.3 (see Experimental Results).

The definition of@ can be generalized to weighted net-
works by extending;; anda; to corresponding fractions of
edge weights. However, the generalization is only mean-
ingful for sparse networks, while weighted networks in real

(4)

can choose a threshold to remove low-weight edges so that,
in the ideal case, the number of remaining ones would be just
enough to form completely connected communities with no
inter-community connections. Therefore, for a perfecse€lu
tering, the weights of the intra-community edges should be
all higher than that of inter-community edges.

Based on this insight, the edge-weight threshold can
be uniquely determined as follows. Suppose a clustering
method returns a partitiol, = {P, P, --, P} on a
weighted graph. The number of edges needed to com-
pletely connect the intra-cluster node pairs is >, (| P;| x
(|P;| —1)/2). We sort all the edges in the network in a non-
increasing order of their weights. We then set the weights of
the firsts edges to 1, and discard the other edges. In case
that thes-th edge is tied with other edges on weights, we
remove all or none of them to keep the number of remaining
edges as close toas possible. Th§ value of the resulting
graph can then be computed according to Equation (4).

It is evident that the above method also works for sparse
and unweighted graphs. We call¢a value computed as
abovethe thresholded @ value, or Q* in short. Note that
certain variants of our method are also possible. For ex-
ample, we could use a threshold to determine which edges
should be removed, without changing the weights of the re-
maining edges. The other variant is that, instead of keeping
the tops edges, we may keep only a fractiprof s, where
0 < p < 1, ifwe require the communities to be sparse. From
our experience, however, we have found that the results of
these variants are very similar, given thds not too small.

The Algorithm

Based on our method for constructing a new graph from
a network and the method for measuring modularity, our
overall algorithm is generic in that it can be combined with
any clustering algorithm. In our study, we consider spec-
tral clustering, since it has been extensively studied for
graph partitioning problems (Chan, Schlag, & Zien 1993;
Ng, Jordan, & Weiss 2001; White & Smyth 2005). In gen-

applications are often dense or even complete graphs. A eral, a spectral clustering algorithm uses eigenvectois of

weighted network is usually derived from similarity scores

matrix to map the original data to vectors in the spectral

between pairs o_f no_des, which can be computed for any pair space, which are then clustered by standard algorithms such
of nodes, resulting in a dense or complete graph. On such ask-means. In this research, we adopt the widely used spec-

networks, they function often fails to produce meaningful
results as we will see in Experimental Results.

A simple way to fix this problem is to use a weight thresh-
old to remove some edges. However, without knowing the
community structure of a network, it is difficult to choose
the right threshold. Furthermore, it is always possiblesde u
a high threshold to break a network into small disconnected
components, so as to obtain a highvalue, whereas the
resulting clustering may not be meaningful for the original
network. Therefore, maximizing is not a good criterion.

Here we propose a method to determine a weight thresh-

old for edge removal so that meaningful community struc-
tures can be revealed, and the correspondingalue can

be used to unbiasedly compare different clustering results
The intuition of our method is as following. Since a com-
munity is a set of nodes that are highly connected among
themselves but only loosely to the rest of the network, we

tral clustering algorithm in (Ng, Jordan, & Weiss 2001). It
has been shown that this algorithm is equivalent to optimiz-
ing @ in a relaxed sense that ignores the discreteness con-
straints (White & Smyth 2005).

Given a graptG = (V, E) and its adjacency matriA =
(A;;), our algorithm executes the following steps:
1. Compute matrice® andC by Equations (1) and (2).

2. ComputeH = A + 3B + C. Default values ot and 3
are 1 for sparse graphs and 0 for dense graphs.

Let D be a diagonal matrix witlD;; = Zj H;; and con-
struct a matrix, = D~Y/2HD~1/2,

. Find theK largest eigenvectors @f, 1, x5, -+, zx, and
form matrix Uy = [x1, 22, -+, 2] iIn R"*X where K
is an upper bound of the number of clusters.

5. Foreachintegek, 2 < k < K:

3.



(a) Form matrixJ;, using the firs& columns ofUx . Scale . Q. o ® —
. — ite-Smy!
each row vector oty to have unit length. > D

(b) Cluster the row vectors @f;, usingk-means clustering,
and calculate thé)* value for the result.

6. Select & that gives a clustering with the high&gt.
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We first tested our methods on networks with known com- © 0 @
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munity structures embedded to evaluate their performance. o . in o7 a8
We generated a large number of unweighted networks of o o
100 nodes, divided into four communities of 25 nodes \
each. Edges were randomly placed with probabitity
for nodes within the same community and with probabil-
ity po.: fOor nodes across communities. We varigg from T e S o1
0.8 to 0.2, representing networks with highly connected to 72" A.c ) o P,=03
loosely connected communities. For eagh, we varied " e, P . e P
Pout from O to p;, /2 with an interval ofp;,, /6. With the
trivial case ofp;, = 0, there is no inter-community edges.  Figure 1: Clustering results on unweighted networks.
Whenpou: = pin/3, the total numbers of inter- and intra-  (a),(c): Wallace Indices between true and predicted dlsiste

community edges are roughly equal. Whej, > pin/3, (b),(d): Q values of the true and predicted clusters. Each
each node has more inter- than intra-community edges on gata point is an average of 100 runs.

average, although edge densities within communities are
still higher than other regions of the network. For each net-

work G and its adjacency matrid, we computed matrices graphs to demonstrate that tii¢ matrix can be general-
B andC with Equations (1) and (2), and different combina- jzeq to weighted networks, and our method for estimating

tions of them. We clustered them given the correct number ihe thresholded) values on weighted graphs can be used to
of clusters. To measure clustering accuracy, we computed gentify the correct number of clusters.

the minimal Wallace Index (Wallace 1983) between the true  Aq shownin Fig. 2(a), giveh, the correct number of clus-

clusteringl’ and the predicted clustering, which is defined ters. C' often results in ,highef;V values thand. Further-

as following: more, the combination oft + B + C works no better than
W(L,T’) = min (N1, /S(T), N11/S(I)) , (5) C alone, although still better thad. Whenk is not given,

. o . both@! and@ can often give good estimationsafwith Q*
whereN7; is the number of node pairs in the same cluster in being slightly better for smallex; (Fig. 2(c)). In contrast,

bothI" andI”, andS(I') is the number of intra-cluster node e scaled cost function (Chan, Schiag, & Zien 1993) is not
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pair; inT". . able to recovek even in the simplest cases whéyandQ'

Fig. 1 showslV as a function Opoy:, for pi, €quals 10 ake no mistakes. An advantage@f over( is thatQ! is
0.6and0.3, representing dense and sparse community Struc-m e meaningful thaf) in quantifying cluster qualities. As
tures, respectively. For both casésalone results in signif- shown in Fig. 2(b), the)! values for these networks range
icantly better clustering thad for po.: > pin/3, where — f4m'0.4 10 0.1, representing networks with strong to weak
the @ value drops to below 0.3 (Fig. 1(b) and (d)), indi-  communities. Indeed, for the networks wit}f > 0.3, our
cating weak community structures. This suggests ¢hat method makes very few mistakes in recovering the original

indeed able to remove many of the inter-community edges q,cryres, a phenomenon similar to unweighted graphs. In

that are unlikely to .b.e in.any triangles. On the other hand, contrast, the) values tend to be much smaller and do not
for sparse communitieg; is in fact worse thaml whenp,,,; quantify cluster strengths very well.

is small (Fig. 1(c)), since a significant portion of the intra
community edges may be removed in this case. The cluster-
ing accuracy ofA + C' is always better than that of and

only slightly worse than that of’ for dense communities. We also evaluated our methods on two real-world networks

Real-world Networks with Known Structures

On the other handB alone is not better thad in general, with known community structures. The first example is
and in some cases may be worse. Howevds,ig combined from one of the classical social network studies. In this
with A4, or A + C, it always produces good results. study, Zachary observed over two years the social interac-

Next, we generated a set of weighted complete graphs of tions among 34 members of a karate club. In this period,
100 nodes with four equal-sized communities. The intra- the club was split into two smaller ones, due to a dispute
and inter-community edges have weights randomly drawn between the club’s instructor and administrator. Fig. 3(a)
from the positive half of normal distributiond’(u1,01) shows the network and the actual split of the club. Ap-
and N (us,09), respectively. We fixedi; at 0 ando; = plying our method to the network, the best result was ob-
oo = 1, while variedp; from 0.3 to 1. We used these tained with matrixA + B + C' and A + B, where we per-
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Figure 2: Clustering results on weighted networks. (a) Wal-
lace Indices between true and predicted clustersQ(bhd

@t values of the true and predicted clusters. (c) The per-
centage of incorrect predictions to the number of clusters.

fectly predicted the division of the members, witlavalue
0.372. In comparison, the White & Smyth method disagreed
with the actual division on node 3, and had slightly lowger
value (0.36). Interestingly, with our method, the maximal
Q@ value (0.42) occurred when the network was split into
four clusters, as indicated by the four different node types
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Figure 3: (a) The karate club network. Light and dark nodes
represent the actual division of the club. Shapes correspon
to the division predicted by our algorithm. (@)values from
clustering the karate club network. (€)values from clus-
tering the NCAA football teams. (d) values from cluster-
ing the CiteSeer collaboration network.

tions orC alone. In comparison, the clustering coefficient
for the karate club network is 0.298, and as a result the com-
bination of A + B + C'is better tharC alone.

Real Applications

in Fig. 3(a). These splits seem to be reasonable: the five Finally, we applied our method to two networks for which
hexagonal nodes form a connected sub-community that hasthe true community structures were not well understood.

no paths to the community led by the instructor (node 33),
other than through the administrator (node 1); the 10 cir-

cular nodes on the upper left are more tightly connected to co-authorship database.
nodes 33 and 34 than the 6 nodes on the bottom left. In con-

trast, the) values are much smaller for the White & Smyth
method to split the network intb > 2 clusters.

The second real-world example we examined is a net-
work of 115 NCAA Division I-A American college foot-

The first application was to cluster a network of collabora-
tions among computer scientists embedded in the CiteSeer
In order to focus on community
structures, we selected authors (nodes) who have at least
15 collaborators. The largest connected component in this
network contains 275 nodes and 417 edges. We run our al-
gorithm with & from 5 to 31; the® values of the results are
shown in Fig. 3(d). The network has very strong community

ball teams, where a node is a team and an edge represents &tructures, in that the begt value, 0.89, was achieved by
game played by two teams in year 2000. The teams were of- A + B + C andA + B atk = 21. On the other hand, the
ficially organized into 11 conferences, and each team played bestQ value obtained byl is only 0.82, indicating that our

more intra- than inter-conference games. Therefore, the co

new method is also effective on this application. Note that

ference structure represents the communities that we would matrix C alone produced very poor results, as shown by the

like to identify (network not shown due to space limit). In-
deed, as shown in Fig. 3(c), the maxinfalvalue for our

low (Q values for allk. This is because the collaboration net-
work is very sparse and has a low clustering coefficient of

method corresponds to 11 clusters, which is exactly the 0.29. Fig. 4 shows the network structure and the best clus-

number of conferences. Furthermore, with these clusters,

tering given byA + B + C. Itis evident that many edges in

each team was correctly assigned to its own conference, ex- the network are not in any triangles, which explains wihy

cept for eight teams that do not belong to any of the confer-
ences. The clustering by the White & Smyth method with

did not work well on this application.
The clustering clearly reflects various sub-communities

11 clusters is the same as ours. On the other hand, with otheramong computer scientists, such as machine learning,-multi

numbers of clusters, our method often identified better com-

munity structures than theirs. Since the clustering caefitc
is relatively high for this network (0.412), the combinatio
of A+ B + C performs slightly worse than other combina-

agent, software engineering, compiler, and cryptography.

Some clusters are specific and contain a few nodes, such as
the researchers working on PVM or the CiteSeer search en-
gine. These communities tend to be near the perimeter of the
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(b) Average gene expression profiles of the best 4 clusters.

CiteSeer

Real-time systems @

many known and unknown network structures, the strength

daabase o A * o = = of these operations and their combinations. Among many
. A Metwark .n other things, the most important conclusion is that the com-
P Disteibuted Systeens bination of these operations, along with the original graph
£ “ihiagen is very effective in revealing weak community structures in

both sparse and dense networks.
We also extended the work by Newman and Girvan
Figure 4: Clustering CiteSeer collaboration netwolks= for quantifying the strength of community structures to
21. Best viewed in color. weighted complete graphs. We showed that, on both syn-
thetic and real-world networks, the generalization alldwe
us to unbiasedly evaluate the clustering quality, and au-
network and have very few inter-community edges. On the tomatically determine the best number of clusters without
other hand, some groups are not well-defined and connect to prior knowledge of network structures.
many other communities; examples include networks, dis-  In short, our extensive experiments and applications to
tributed systems, and real-time systems communities. many types of networks showed that our methods are effec-
The second application was to cluster a genetic network tive in discovering high-quality weak community structsire
of 800 yeast cell-cycle genes. Expression profiles of these in large networks.
genes at 77 time points during cell cycles were obtained
from (Spellmaret al. 1998). The network was constructed  Acknowledgments. This research was supported in part by NSF
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scaled to within0, 1]. The graph was then transformed by = comments.
Equation (3) and fed into the spectral clustering algoritbm
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